17 research outputs found

    2-Thiopyrimidine/chalcone hybrids: design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors

    No full text
    A novel 2-thiopyrimidine/chalcone hybrid was designed, synthesised, and evaluated for their cytotoxic activities against three different cell lines, K-562, MCF-7, and HT-29. The most active cytotoxic derivatives were 9d, 9f, 9n, and 9p (IC50=0.77–1.74 µM, against K-562 cell line), 9a and 9r (IC50=1.37–3.56 µM against MCF-7 cell line), and 9a, 9l, and 9n (IC50=2.10 and 2.37 µM against HT-29 cell line). Compounds 9a, 9d, 9f, 9n, and 9r were further evaluated for their cytotoxicity against normal fibroblast cell line WI38. Moreover, STAT3 and STAT5a inhibitory activities were determined for the most active derivatives 9a, 9d, 9f, 9n, and 9r. Dual inhibitory activity was observed in compound 9n (IC50=113.31 and 50.75 µM, against STAT3 and STAT5a, respectively). Prediction of physicochemical properties, drug likeness score, pharmacokinetic and toxic properties was detected

    Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study

    No full text
    Nineteen new compounds containing tetrazole and/or cyanamide moiety have been designed and synthesised. Their structures were confirmed using spectroscopic methods and elemental analyses. Anti-inflammatory activity for all the synthesised compounds was evaluated in vivo. The most active compounds 4c, 5a, 5d–f, 8a and b and 9a and b were further investigated for their ulcerogenic liability and analgesic activity. Pyrazoline derivatives 9b and 8b bearing trimethoxyphenyl part and SO2NH2 or SO2Me pharmacophore showed equal or nearly the same ulcerogenic liability (UI: 0.5, 0.75, respectively), to celecoxib (UI: 0.50). Most of tested compounds showed potent central and/or peripheral analgesic activities. Histopathological investigations were done to evaluate test compounds effect on rat's gastric tissue. The obtained results were in consistent with the in vitro data on COX evaluation. Docking study was also done for all the target compounds inside COX-2-active site

    Design and synthesis of new indole drug candidates to treat Alzheimer’s disease and targeting neuro-inflammation using a multi-target-directed ligand (MTDL) strategy

    No full text
    A novel series of indole-based compounds was designed, synthesised, and evaluated as anti-Alzheimer’s and anti-neuroinflammatory agents. The designed compounds were in vitro evaluated for their AChE and BuChE inhibitory activities. The obtained results revealed that compound 3c had higher selectivity for AChE than BuChE, while, 4a, 4b, and 4d showed selectivity for BuChE over AChE. Compounds 5b, 6b, 7c, and 10b exerted dual AChE/BuChE inhibitory activities at nanomolar range. Compounds 5b and 6b had the ability to inhibit the self-induced Aβ amyloid aggregation. Different anti-inflammatory mediators (NO, COX-2, IL-1β, and TNF-α) were assessed for compounds 5b and 6b. Cytotoxic effect of 5b and 6b against human neuroblastoma (SH-SY5Y) and normal hepatic (THLE2) cell lines was screened in vitro. Molecular docking study inside rhAChE and hBuChE active sites, drug-likeness, and ADMET prediction were performed.</p

    Novel N-methylsulfonyl-indole derivatives: biological activity and COX-2/5-LOX inhibitory effect with improved gastro protective profile and reduced cardio vascular risks

    No full text
    AbstractThree novel series of N-methylsulfonylindole derivatives 3a&b, 4a–e, and 5a–e were synthesised. Different biological activities of the synthesised compounds were studied. Antimicrobial activity showed that, compounds 4b, 4e and 5d had selective antibacterial activity against the Gram-negative bacteria, Salmonella enterica and/or E. coli. The anti-oxidant activity of the synthesised compounds was evaluated by DPPH radical scavenging activity. In vitro anti-inflammatory activity was estimated. Compounds 4d, 4e, 5b, and 5d showed the highest anti-inflammatory activity. The COX-1, COX-2 and 5-LOX inhibitory activities were measured using enzyme immune assay (EIA) kits. Due to the dual COX-2/5-LOX inhibitory activity of compound 5d, its cardiovascular profile was determined by measuring cardiac biomarkers (LDH, CK-MB, and Tn-I). Besides, the histopathological study of the heart muscle and stomach were examined for the most active COX-2 inhibitors 4e and 5d. Finally, a molecular modelling study and pharmacokinetic properties were obtained using different computational methods

    Novel <i>N</i>-methylsulfonyl-indole derivatives: biological activity and COX-2/5-LOX inhibitory effect with improved gastro protective profile and reduced cardio vascular risks

    No full text
    Three novel series of N-methylsulfonylindole derivatives 3a&b, 4a–e, and 5a–e were synthesised. Different biological activities of the synthesised compounds were studied. Antimicrobial activity showed that, compounds 4b, 4e and 5d had selective antibacterial activity against the Gram-negative bacteria, Salmonella enterica and/or E. coli. The anti-oxidant activity of the synthesised compounds was evaluated by DPPH radical scavenging activity. In vitro anti-inflammatory activity was estimated. Compounds 4d, 4e, 5b, and 5d showed the highest anti-inflammatory activity. The COX-1, COX-2 and 5-LOX inhibitory activities were measured using enzyme immune assay (EIA) kits. Due to the dual COX-2/5-LOX inhibitory activity of compound 5d, its cardiovascular profile was determined by measuring cardiac biomarkers (LDH, CK-MB, and Tn-I). Besides, the histopathological study of the heart muscle and stomach were examined for the most active COX-2 inhibitors 4e and 5d. Finally, a molecular modelling study and pharmacokinetic properties were obtained using different computational methods. </p
    corecore