24 research outputs found

    Synthesis and Antimicrobial Activity of some Novel Isoindoline-1,3-Dione Derivatives

    Get PDF
    New phthalimido derivatives incorporated with chalcone, pyrazole,  pyrazoline, and pyrimidine moieties were synthesized and evaluated for their antimicrobial activities against bacterial and fungal strains. 2-{4-[1-Acetyl-5-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl]phenyl} isoindoline-1,3-dione (7) showed broad spectrum antibacterial activity against both G+ and G- bacteria. While, (E)-2-{4-[3-(4-chlorophenyl)acryloyl]phenyl}isoindoline-1,3-dione (4b) showed promising antifungal activity

    2-Thiopyrimidine/chalcone hybrids: design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors

    No full text
    A novel 2-thiopyrimidine/chalcone hybrid was designed, synthesised, and evaluated for their cytotoxic activities against three different cell lines, K-562, MCF-7, and HT-29. The most active cytotoxic derivatives were 9d, 9f, 9n, and 9p (IC50=0.77–1.74 µM, against K-562 cell line), 9a and 9r (IC50=1.37–3.56 µM against MCF-7 cell line), and 9a, 9l, and 9n (IC50=2.10 and 2.37 µM against HT-29 cell line). Compounds 9a, 9d, 9f, 9n, and 9r were further evaluated for their cytotoxicity against normal fibroblast cell line WI38. Moreover, STAT3 and STAT5a inhibitory activities were determined for the most active derivatives 9a, 9d, 9f, 9n, and 9r. Dual inhibitory activity was observed in compound 9n (IC50=113.31 and 50.75 µM, against STAT3 and STAT5a, respectively). Prediction of physicochemical properties, drug likeness score, pharmacokinetic and toxic properties was detected

    Identification of mitochondrial gene products by DNA-directed protein synthesis in vitro

    No full text
    1. 1. A cell-free system, derived from Escherichia coli is highly active in the linked transcription-translation of yeast mtDNA from both wild-type and petite strains. 2. 2. The products of synthesis are short (Mr < 10 000) hydrophobic polypeptides, which show a high tendency to aggregate in a specific fashion with E. coli and mitochondrial proteins. Aggregation is extremely persistent: alkali, sodium dodecyl sulphate urea, guanidinium · HCl and carboxymethylation reduce it, but do not eliminate it completely. 3. 3. Nevertheless, results of indirect immunoprecipitation tests suggest that antigenic determinants of cytochrome c oxidase are among the products synthesized. The immunoprecipitation appears specific by criteria including competition experiments and its absence when mtDNA from low complexity petites, retaining only the gene for 21 S rRNA and some flanking sequences, is used to programme protein synthesis. Electrophoretic analysis of material precipitated by anti-cytochrome c oxidase sera reveals four discrete polypeptides with molecular weights of 7400, 6400, 5000 and 4100, which probably represent polypeptide fragments carrying antigenic determinants of cytochrome c oxidase

    Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study

    No full text
    Nineteen new compounds containing tetrazole and/or cyanamide moiety have been designed and synthesised. Their structures were confirmed using spectroscopic methods and elemental analyses. Anti-inflammatory activity for all the synthesised compounds was evaluated in vivo. The most active compounds 4c, 5a, 5d–f, 8a and b and 9a and b were further investigated for their ulcerogenic liability and analgesic activity. Pyrazoline derivatives 9b and 8b bearing trimethoxyphenyl part and SO2NH2 or SO2Me pharmacophore showed equal or nearly the same ulcerogenic liability (UI: 0.5, 0.75, respectively), to celecoxib (UI: 0.50). Most of tested compounds showed potent central and/or peripheral analgesic activities. Histopathological investigations were done to evaluate test compounds effect on rat's gastric tissue. The obtained results were in consistent with the in vitro data on COX evaluation. Docking study was also done for all the target compounds inside COX-2-active site

    Design and synthesis of new indole drug candidates to treat Alzheimer’s disease and targeting neuro-inflammation using a multi-target-directed ligand (MTDL) strategy

    No full text
    A novel series of indole-based compounds was designed, synthesised, and evaluated as anti-Alzheimer’s and anti-neuroinflammatory agents. The designed compounds were in vitro evaluated for their AChE and BuChE inhibitory activities. The obtained results revealed that compound 3c had higher selectivity for AChE than BuChE, while, 4a, 4b, and 4d showed selectivity for BuChE over AChE. Compounds 5b, 6b, 7c, and 10b exerted dual AChE/BuChE inhibitory activities at nanomolar range. Compounds 5b and 6b had the ability to inhibit the self-induced Aβ amyloid aggregation. Different anti-inflammatory mediators (NO, COX-2, IL-1β, and TNF-α) were assessed for compounds 5b and 6b. Cytotoxic effect of 5b and 6b against human neuroblastoma (SH-SY5Y) and normal hepatic (THLE2) cell lines was screened in vitro. Molecular docking study inside rhAChE and hBuChE active sites, drug-likeness, and ADMET prediction were performed.</p
    corecore