2 research outputs found

    An Asymmetric SN2 Dynamic Kinetic Resolution

    No full text
    The SN2 reaction exhibits the classic Walden inversion, indicative of the stereospecific backside attack of the nucleophile on the stereogenic center. Observation of the inversion of the stereocenter provides evidence for an SN2-type displacement. However, this maxim is contingent on substitution proceeding on a discrete stereocenter. Here we report an SN2 reaction that leads to enantioenrichment of product despite starting from a racemic mixture of starting material. The enantioconvergent reaction proceeds through a dynamic Walden cycle, involving an equilibrating mixture of enantiomers, initiated by a chiral aminocatalyst and terminated by a stereoselective SN2 reaction at a tertiary carbon to provide a quaternary carbon stereocenter. A combination of computational, kinetic, and empirical studies elucidates the multifaceted role of the chiral organocatalyst to provide a model example of the Curtin–Hammett principle. These examples challenge the notion of enantioenriched products exclusively arising from predefined stereocenters when operating through an SN2 mechanism. Based on these principles, examples are included to highlight the generality of the mechanism. We anticipate the asymmetric SN2 dynamic kinetic resolution to be used for a variety of future reactions

    Umpolung Strategy for α‐Functionalization of Aldehydes for the Addition of Thiols and other Nucleophiles

    No full text
    Nucleophile–nucleophile coupling is a challenging transformation in organic chemistry. Herein we present a novel umpolung strategy for α‐functionalization of aldehydes with nucleophiles. The strategy uses organocatalytic enamine activation and quinone‐promoted oxidation to access O‐bound quinol‐intermediates that undergo nucleophilic substitution reactions. These quinol‐intermediates react with different classes of nucleophiles. The focus is on an unprecedented organocatalytic oxidative α‐thiolation of aldehydes. The reaction scope is demonstrated for a broad range of thiols and extended to chemoselective bioconjugation, and applicable to a large variety of aldehydes. This strategy can also encompass organocatalytic enantioselective coupling of α‐branched aldehydes with thiols forming quaternary thioethers. Studies indicate a stereoselective formation of the intermediate followed by a stereospecific nucleophilic substitution reaction at a quaternary stereocenter, with inversion of configuration
    corecore