28 research outputs found

    Personalizing oncolytic virotherapy for glioblastoma: In search of biomarkers for response

    Get PDF
    Oncolytic virus (OV) treatment may offer a new treatment option for the aggressive brain tumor glioblastoma. Clinical trials testing oncolytic viruses in this patient group have shown promising results, with patients achieving impressive long-term clinical responses. However, the number of responders to each OV remains low. This is thought to arise from the large heterogeneity of these tumors, both in terms of molecular make-up and their immune-suppressive microenvironment, leading to variability in responses. An approach that may improve response rates is the personalized utilization of oncolytic viruses against Glioblastoma (GBM), based on specific tumor-or pa-tient-related characteristics. In this review, we discuss potential biomarkers for response to different OVs as well as emerging ex vivo assays that in the future may enable selection of optimal OV for a specific patient and design of stratified clinical OV trials for GBM

    ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells

    Get PDF
    Background: The current standard of care for Glioblastoma Multiforme (GBM) consists of fractionated focal irradiation with concomitant temozolomide (TMZ) chemotherapy. A promising strategy to increase the efficacy of TMZ is through interference with the DNA damage repair machinery, by poly(ADP-ribose) polymerase protein inhibition(PARPi). The o

    A Systematic Comparison Identifies an ATP-Based Viability Assay as Most Suitable Read-Out for Drug Screening in Glioma Stem-Like Cells

    Get PDF
    Serum-free culture methods for patient-derived primary glioma cultures, selecting for glioma stem-like cells (GSCs), are becoming the gold standard in neurooncology research. These GSCs can be implemented in drug screens to detect patient-specific responses, potentially bridging the translational gap to personalized medicine. Since numerous compounds are available, a rapid and reliable readout for drug efficacies is required. This can be done using approaches that measure viability, confluency, cytotoxicity, or apoptosis. To determine which assay is best suitable for drug screening, 10 different assays were systematically tested on established glioma cell lines and validated on a panel of GSCs. General applicability was assessed using distinct treatment modalities, being temozolomide, radiation, rapamycin, and the oncolytic adenovirus Delta24-RGD. The apoptosis and cytotoxicity assays did not unequivocally detect responses and were excluded from further testing. The NADH- and ATP-based viability assays revealed comparable readout for all treatments; however, the latter had smaller standard deviations and direct readout. Importantly, drugs that interfere with cell metabolism require alternative techniques such as confluency monitoring to accurately measure treatment effects. Taken together, our data suggest that the combination of ATP luminescence assays with confluency monitoring provides the most specific and reproducible readout for drug screening on primary GSCs

    The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity

    Get PDF
    The oncolytic adenovirus Delta24-RGD represents a new promising therapeutic agent for patients with a malignant glioma and is currently under investigation in clinical phase I/II trials. Earlier preclinical studies showed that Delta24-RGD is able to effectively lyse tumor cells, yielding promising results in various immune-deficient glioma models. However, the role of the immune response in oncolytic adenovirus therapy for glioma has never been explored. To this end, we assessed Delta24-RGD treatment in an immune-competent orthotopic mouse model for glioma and evaluated immune responses against tumor and virus. Delta24-RGD treatment led to long-term survival in 50% of mice and this effect was completely lost upon administration of the immunosuppressive agent dexamethasone. Delta24-RGD enhanced intra-tumoral infiltration of F4/80+ macrophages, CD4+ and CD8+ T-cells, and increased the local production of pro-inflammatory cytokines and chemokines. In treated mice, T cell responses were directed to the virus as well a

    Idh1-mutated transgenic zebrafish lines: An in-vivo model for drug screening and functional analysis

    Get PDF
    Introduction The gene encoding isocitrate dehydrogenase 1 (IDH1) is frequently mutated in several tumor types including gliomas. The most prevalent mutation in gliomas is a missense mutation leading to a substitution of arginine with histidine at the residue 132 (R132H). Wild type IDH1 catalyzes oxidative decarboxylation of isocitrate to Ī±-ketoglutarate (Ī±-KG) whereas mutant IDH1 converts Ī±-KG into D2-hydroxyglutarate (D2HG). Unfortunately, there are few in vivo model systems for IDH-mutated tumors to study the effects of IDH1 mutations in tumor development. We have therefore created transgenic zebrafish lines that express various IDH1 mutants. Materials and methods IDH1 mutations (IDH1R132H, IDH1R132C and loss-of-function mutation IDH1G70D), IDH1wildtype or eGFP were cloned into constructs with several brain-specific promoters (Nestin, Gfap or Gata2). These constructs were injected into fertilized zebrafish eggs at the one-cell stage. Results In total more than ten transgenic zebrafish lines expressing various brain-specific IDH1 mutations were created. A significant increase in the level of D2HG was observed in all transgenic lines expressing IDH1R132C or IDH1R132H, but not in any of the lines expressing IDH1wildtype, IDH1G70D or eGFP. No differences in 5-hydroxymethyl cytosine and mature collagen IV levels were observed between wildtype and mutant IDH1 transgenic fish. To our surprise, we failed to identify any strong phenotype, despite increased levels of the oncome-tabolite D2HG. No tumors were observed, even when backcrossing with tp53-mutant fish which suggests that additional transforming events are required for tumor formation. Elevated D2HG levels could be lowered by treatment of the transgenic zebrafish with an inhibitor of mutant IDH1 activity. Conclusions We have generated a transgenic zebrafish model system for mutations in IDH1 that can be used for functional analysis and drug screening. Our model systems help understand the biology of IDH1 mutations and its role in tumor formation

    Complement activation in Glioblastoma Multiforme pathophysiology: Evidence from serum levels and presence of complement activation products in tumor tissue

    Get PDF
    Inflammation plays a key role in the pathophysiology of Glioblastoma Multiforme (GBM). Here we focus on the contribution of the so far largely ignored complement system.ELISA and immunohistochemistry were combined to assess levels and localization of critical components of the initiation- and effector pathways of the complement cascade in sera and tumor tissue from GBM patients and matched controls.Serum levels of factor-B were decreased in GBM patients whereas C1q levels were increased. C1q and factor-B deposited in the tumor tissue. Deposition of C3 and C5b-9 suggests local complement activation. MBL deficiency, based on serum levels, was significantly less frequent among GBM patients compared to controls (14% vs. 33%). Therefore low levels of MBL may protect against the initiation/progression of GBM

    Developing oncolytic viruses for clinical use: A consortium approach

    Get PDF
    The use of oncolytic viruses forms an appealing approach for cancer treatment. On the one hand the viruses replicate in, and kill, tumor cells, leading to their intra-tumoral amplification. On the other hand the viral infection will activate virus-directed immune responses, and may trigger immune responses directed against tumor cells and tumor antigens. To date, a wide variety of oncolytic viruses is being developed for use in cancer treatment. While the development of oncolytic viruses has often been initiated by researchers in academia and other public institutions, a large majority of the final product development and the testing of these products in clinical trials is industry led. As a consequence relatively few pre-clinical and clinical studies evaluated different oncolytic viruses i

    Nonhuman primate adenoviruses of the human adenovirus B species are potent and broadly acting oncolytic vector candidates

    Get PDF
    The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.Therapeutic cell differentiatio

    The HDAC inhibitors scriptaid and LBH589 combined with the oncolytic virus Delta24-RGD exert enhanced anti-tumor efficacy in patient-derived glioblastoma cells

    Get PDF
    Background: A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastomapathway and enters cells via Ī±vĪ²3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi) affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC), and we determined the most effective HDACi. Methods: SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and Ī±vĪ²3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness. Results: Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both dr

    Theranostic design of angiopepā€2 conjugated hyaluronic acid nanoparticles (Theraā€angā€chanps) for dual targeting a

    Get PDF
    Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and bloodā€brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate followā€up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally occurring polymer of the extracellular matrix (ECM), has great potential in improving the transport of drug molecules and, furthermore, in facilitatating the early diagnosis by the effect of hydrodenticity enabling the T1 boosting of Gadolinium chelates for MRI. Here, crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gdā€DTPA) and the chemotherapeutic agent irinotecan (Thera-cHANPs) are proposed as theranostic nanovectors, with improved MRI capacities. Irinotecan was selected since currently repurposed as an alternative compound to the poorly effective temozolomide (TMZ), generally approved as the gold standard in GBM clinical care. Also, active crossing and targeting are achieved by theranostic cHANPs decorated with angiopepā€2 (Theraā€ ANGā€cHANPs), a dualā€targeting peptide interacting with low density lipoprotein receptor related proteinā€1(LRPā€1) receptors overexpressed by both endothelial cells of the BBB and glioma cells. Results showed preserving the hydrodenticity effect in the advanced formulation and internalization by the active peptideā€mediated uptake of Theraā€cHANPs in U87 and GSā€102 cells. Moreover, Theraā€ANGā€cHANPs proved to reduce ironotecan time response, showing a significant cytotoxic effect in 24 h instead of 48 h
    corecore