2,370 research outputs found

    N-body simulations of star clusters

    Full text link
    Two aspects of our recent N-body studies of star clusters are presented: (1) What impact does mass segregation and selective mass loss have on integrated photometry? (2) How well compare results from N-body simulations using NBODY4 and STARLAB/KIRA?Comment: 2 pages, 1 figure with 4 panels (in colour, not well visible in black-and-white; figures screwed in PDF version, ok in postscript; to see further details get the paper source). Conference proceedings for IAUS246 'Dynamical Evolution of Dense Stellar Systems', ed. E. Vesperini (Chief Editor), M. Giersz, A. Sills, Capri, Sept. 2007; v2: references correcte

    New insight into the physics of atmospheres of early type stars

    Get PDF
    The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested

    Mass fluxes for hot stars

    Full text link
    In an attempt to understand the extraordinarily small mass-loss rates of late-type O dwarfs, mass fluxes in the relevant part of (T_{eff}, g)-space are derived from first principles using a previously-described code for constructing moving reversing layers. From these mass fluxes, a weak-wind domain is identified within which a star's rate of mass loss by a radiatively-driven wind is less than that due to nuclear burning. The five weak-wind stars recently analysed by Marcolino et al. (2009) fall within or at the edge of this domain. But although the theoretical mass fluxes for these stars are ~ 1.4 dex lower than those derived with the formula of Vink et al. (2000), the observed rates are still not matched, a failure that may reflect our poor understanding of low-density supersonic outflows. Mass fluxes are also computed for two strong-wind O4 stars analysed by Bouret et al. (2005). The predictions agree with the sharply reduced mass loss rates found when Bouret et al. take wind clumping into account.Comment: Accepted by A&A; 6 pages, 5 figures; minor changes from v

    The Star Cluster Population of M51

    Full text link
    We present the age and mass distribution of star clusters in M51. The structural parameters are found by fitting cluster evolution models to the spectral energy distribution consisting of 8 HST-WFPC2 pass bands. There is evidence for a burst of cluster formation at the moment of the second encounter with the companion NGC5195 (50-100 Myr ago) and a hint for an earlier burst (400-500 Myr ago). The cluster IMF has a power law slope of -2.1. The disruption time of clusters is extremely short (< 100 Myr for a 10^4 Msun cluster).Comment: 2 pages, to appear in "The Formation and Evolution of Massive Young Star Clusters", 17-21 November 2003, Cancun (Mexico

    Stagnation and Infall of Dense Clumps in the Stellar Wind of tau Scorpii

    Full text link
    Observations of the B0.2V star tau Scorpii have revealed unusual stellar wind characteristics: red-shifted absorption in the far-ultraviolet O VI resonance doublet up to +250 km/s, and extremely hard X-ray emission implying gas at temperatures in excess of 10^7 K. We describe a phenomenological model to explain these properties. We assume the wind of tau Sco consists of two components: ambient gas in which denser clumps are embedded. The clumps are optically thick in the UV resonance lines primarily responsible for accelerating the ambient wind. The reduced acceleration causes the clumps to slow and even infall, all the while being confined by the ram pressure of the outflowing ambient wind. We calculate detailed trajectories of the clumps in the ambient stellar wind, accounting for a line radiation driving force and the momentum deposited by the ambient wind in the form of drag. We show these clumps will fall back towards the star with velocities of several hundred km/sec for a broad range of initial conditions. The infalling clumps produce X-ray emitting plasmas with temperatures in excess of (1-6)x10^7 K in bow shocks at their leading edge. The infalling material explains the peculiar red-shifted absorption wings seen in the O VI doublet. The required mass loss in clumps is 3% - 30% ofthe total mass loss rate. The model developed here can be generally applied to line-driven outflows with clumps or density irregularities. (Abstract Abridged)Comment: To appear in the ApJ (1 May 2000). 24 pages, including 6 embedded figure

    Star Cluster Formation and Disruption Time-Scales - II. Evolution of the Star Cluster System in M82's Fossil Starburst

    Get PDF
    ABRIDGED: We obtain new age and mass estimates for the star clusters in M82's fossil starburst region B, based on improved fitting methods. Our new age estimates confirm the peak in the age histogram attributed to the last tidal encounter with M81; we find a peak formation epoch at slightly older ages than previously published, log(t_peak / yr) = 9.04, with a Gaussian sigma of Delta log(t_width) = 0.273. Cluster disruption has removed a large fraction of the older clusters. Adopting the expression for the cluster disruption time-scale of t_dis(M)= t_dis^4 (M/10^4 Msun)^gamma with gamma = 0.62 (Paper I), we find that the ratios between the real cluster formation rates in the pre-burst phase (log(t/yr) <= 9.4), the burst-phase (8.4 < log(t/yr) < 9.4) and the post-burst phase (log(t/yr) <= 8.4) are about 1:2:1/40. The mass distribution of the clusters formed during the burst shows a turnover at log(M_cl/Msun) ~ 5.3 which is not caused by selection effects. This distribution can be explained by cluster formation with an initial power-law mass function of slope alpha=2 up to a maximum cluster mass of M_max = 3 x 10^6 Msun, and cluster disruption with a normalisation time-scale t_dis^4 / t_burst = (3.0 +/- 0.3) x 10^{-2}. For a burst age of 1 x 10^9 yr, we find that the disruption time-scale of a cluster of 10^4 Msun is t_dis^4 ~ 3 x 10^7 years, with an uncertainty of approximately a factor of two. This is the shortest disruption time-scale known in any galaxy.Comment: 14 pages including 8 postscript figures; accepted for publication in MNRA

    On the Interpretation of the Age Distribution of Star Clusters in the Small Magellanic Cloud

    Full text link
    We re-analyze the age distribution (dN/dt) of star clusters in the Small Magellanic Cloud (SMC) using age determinations based on the Magellanic Cloud Photometric Survey. For ages younger than 3x10^9 yr the dN/dt distribution can be approximated by a power-law distribution, dN/dt propto t^-beta, with -beta=-0.70+/-0.05 or -beta=-0.84+/-0.04, depending on the model used to derive the ages. Predictions for a cluster population without dissolution limited by a V-band detection result in a power-law dN/dt distribution with an index of ~-0.7. This is because the limiting cluster mass increases with age, due to evolutionary fading of clusters, reducing the number of observed clusters at old ages. When a mass cut well above the limiting cluster mass is applied, the dN/dt distribution is flat up to 1 Gyr. We conclude that cluster dissolution is of small importance in shaping the dN/dt distribution and incompleteness causes dN/dt to decline. The reason that no (mass independent) infant mortality of star clusters in the first ~10-20 Myr is found is explained by a detection bias towards clusters without nebular emission, i.e. cluster that have survived the infant mortality phase. The reason we find no evidence for tidal (mass dependent) cluster dissolution in the first Gyr is explained by the weak tidal field of the SMC. Our results are in sharp contrast to the interpretation of Chandar et al. (2006), who interpret the declining dN/dt distribution as rapid cluster dissolution. This is due to their erroneous assumption that the sample is limited by cluster mass, rather than luminosity.Comment: 8 pages, 4 figures, accepted for publication in Ap
    corecore