31 research outputs found
Improved clinical outcome prediction in depression using neurodynamics in an emotional face-matching functional MRI task
IntroductionApproximately one in six people will experience an episode of major depressive disorder (MDD) in their lifetime. Effective treatment is hindered by subjective clinical decision-making and a lack of objective prognostic biomarkers. Functional MRI (fMRI) could provide such an objective measure but the majority of MDD studies has focused on static approaches, disregarding the rapidly changing nature of the brain. In this study, we aim to predict depression severity changes at 3 and 6 months using dynamic fMRI features.MethodsFor our research, we acquired a longitudinal dataset of 32 MDD patients with fMRI scans acquired at baseline and clinical follow-ups 3 and 6 months later. Several measures were derived from an emotion face-matching fMRI dataset: activity in brain regions, static and dynamic functional connectivity between functional brain networks (FBNs) and two measures from a wavelet coherence analysis approach. All fMRI features were evaluated independently, with and without demographic and clinical parameters. Patients were divided into two classes based on changes in depression severity at both follow-ups.ResultsThe number of coherence clusters (nCC) between FBNs, reflecting the total number of interactions (either synchronous, anti-synchronous or causal), resulted in the highest predictive performance. The nCC-based classifier achieved 87.5% and 77.4% accuracy for the 3- and 6-months change in severity, respectively. Furthermore, regression analyses supported the potential of nCC for predicting depression severity on a continuous scale. The posterior default mode network (DMN), dorsal attention network (DAN) and two visual networks were the most important networks in the optimal nCC models. Reduced nCC was associated with a poorer depression course, suggesting deficits in sustained attention to and coping with emotion-related faces. An ensemble of classifiers with demographic, clinical and lead coherence features, a measure of dynamic causality, resulted in a 3-months clinical outcome prediction accuracy of 81.2%.DiscussionThe dynamic wavelet features demonstrated high accuracy in predicting individual depression severity change. Features describing brain dynamics could enhance understanding of depression and support clinical decision-making. Further studies are required to evaluate their robustness and replicability in larger cohorts
Improved clinical outcome prediction in depression using neurodynamics in an emotional face-matching functional MRI task
Introduction: Approximately one in six people will experience an episode of major depressive disorder (MDD) in their lifetime. Effective treatment is hindered by subjective clinical decision-making and a lack of objective prognostic biomarkers. Functional MRI (fMRI) could provide such an objective measure but the majority of MDD studies has focused on static approaches, disregarding the rapidly changing nature of the brain. In this study, we aim to predict depression severity changes at 3 and 6 months using dynamic fMRI features.Methods: For our research, we acquired a longitudinal dataset of 32 MDD patients with fMRI scans acquired at baseline and clinical follow-ups 3 and 6 months later. Several measures were derived from an emotion face-matching fMRI dataset: activity in brain regions, static and dynamic functional connectivity between functional brain networks (FBNs) and two measures from a wavelet coherence analysis approach. All fMRI features were evaluated independently, with and without demographic and clinical parameters. Patients were divided into two classes based on changes in depression severity at both follow-ups.Results: The number of coherence clusters (nCC) between FBNs, reflecting the total number of interactions (either synchronous, anti-synchronous or causal), resulted in the highest predictive performance. The nCC-based classifier achieved 87.5% and 77.4% accuracy for the 3- and 6-months change in severity, respectively. Furthermore, regression analyses supported the potential of nCC for predicting depression severity on a continuous scale. The posterior default mode network (DMN), dorsal attention network (DAN) and two visual networks were the most important networks in the optimal nCC models. Reduced nCC was associated with a poorer depression course, suggesting deficits in sustained attention to and coping with emotion-related faces. An ensemble of classifiers with demographic, clinical and lead coherence features, a measure of dynamic causality, resulted in a 3-months clinical outcome prediction accuracy of 81.2%.Discussion: The dynamic wavelet features demonstrated high accuracy in predicting individual depression severity change. Features describing brain dynamics could enhance understanding of depression and support clinical decision-making. Further studies are required to evaluate their robustness and replicability in larger cohorts
Quality and denoising in real-time functional magnetic resonance imaging neurofeedback: A methods review
First published: 25 April 2020Neurofeedback training using real-time functional magnetic resonance imaging
(rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity.
It has sparked increased interest as a promising non-invasive treatment option in
neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance
are yet to be determined. In this work, we present the first extensive review
of acquisition, processing and quality control methods available to improve the quality
of the neurofeedback signal. Furthermore, we investigate the state of denoising
and quality control practices in 128 recently published rtfMRI-NF studies. We found:
(a) that less than a third of the studies reported implementing standard real-time
fMRI denoising steps, (b) significant room for improvement with regards to methods
reporting and (c) the need for methodological studies quantifying and comparing the
contribution of denoising steps to the neurofeedback signal quality. Advances in
rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic
effort is needed to build up evidence that disentangles the various mechanisms
influencing neurofeedback effects. To this end, we recommend that future
rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI denoising
steps according to a proposed COBIDAS-style checklist (https://osf.io/kjwhf/),
(b) ensure the quality of the neurofeedback signal by calculating and reporting
community-informed quality metrics and applying offline control checks and (c) strive
to adopt transparent principles in the form of methods and data sharing and support
of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an
interactive environment to explore the study data, can be accessed at https://github.
com/jsheunis/quality-and-denoising-in-rtfmri-nf.LSH‐TKI, Grant/Award Number: LSHM16053‐SGF; Philips Researc
rt-me-fMRI: a task and resting state dataset for real-time, multi-echo fMRI methods development and validation
Latest published: 04 Feb 2021A multi-echo fMRI dataset (N=28 healthy participants) with four task-based and two resting state runs was collected, curated and made available to the community. Its main purpose is to advance the development of methods for real-time multi-echo functional magnetic resonance imaging (rt-me-fMRI) analysis with applications in neurofeedback, real-time quality control, and adaptive paradigms, although the variety of experimental task paradigms supports a multitude of use cases. Tasks include finger tapping, emotional face and shape matching, imagined finger tapping and imagined emotion processing. This work provides a detailed description of the full dataset; methods to collect, prepare, standardize and preprocess it; quality control measures; and data validation measures. A web-based application is provided as a supplementary tool with which to interactively explore, visualize and understand the data and its derivative measures: https://rt-me-fmri.herokuapp.com/. The dataset itself can be accessed via a data use agreement on DataverseNL at https://dataverse.nl/dataverse/rt-me-fmri. Supporting information and code for reproducibility can be accessed at https://github.com/jsheunis/rt-me-fMR
Spatial and Temporal Quality of Brain Networks for Different Multi-Echo fMRI Combination Methods
The application of multi-echo functional magnetic resonance imaging (fMRI) studies has considerably increased in the last decade due to superior BOLD sensitivity compared to single-echo fMRI. Various methods have been developed that combine fMRI data derived at different echo times to improve data quality. Here, we evaluated five multi-echo combination schemes: ‘optimal combination’ (OC, -weighted), -FIT ( -weighted, calculated per volume), average-weighted (Avg), temporal Signal-to-Noise Ratio (tSNR) weighted, and temporal Contrast-to-Noise Ratio weighted combination. The effect of these combinations, with and without additional postprocessing, on the quality of functional resting-state networks was assessed. Sixteen healthy volunteers were scanned during a 5-minutes resting-state fMRI session. After network extraction, several quality metrics in the temporal and spatial domain were calculated for their respective time-series and spatial maps. Our results showed that OC and -FIT outperformed the other methods in both domains. Whereas the OC and -FIT time-series were found to be the least associated with artifacts, OC resulted in the highest quality spatial maps. Furthermore, spatial smoothing, bandpass filtering and ICA-AROMA merely improved networks derived from the least performing combinations (Avg and tSNR). Because similar network quality was obtained following OC and -FIT without postprocessing, we recommend future studies to implement these combinations without these postprocessing steps. This minimizes the amount of image modifications and processing, potentially leading to enhanced BOLD contrast. The results highlight the benefits of -weighted multi-echo combinations on resting-state network quality and raise its potential value in dynamic fMRI analyses or for diagnosis and prognosis purposes of neuropsychiatric disorders