12 research outputs found

    Distinct roles for H4 and H2A.Z acetylation in RNA transcription in African trypanosomes.

    Get PDF
    Despite histone H2A variants and acetylation of histones occurring in almost every eukaryotic organism, it has been difficult to establish direct functional links between canonical histones or H2A variant acetylation, deposition of H2A variants and transcription. To disentangle these complex interdependent processes, we devised a highly sensitive strategy for quantifying histone acetylation levels at specific genomic loci. Taking advantage of the unusual genome organization in Trypanosoma brucei, we identified 58 histone modifications enriched at transcription start sites (TSSs). Furthermore, we found TSS-associated H4 and H2A.Z acetylation to be mediated by two different histone acetyltransferases, HAT2 and HAT1, respectively. Whereas depletion of HAT2 decreases H2A.Z deposition and shifts the site of transcription initiation, depletion of HAT1 does not affect H2A.Z deposition but reduces total mRNA levels by 50%. Thus, specifically reducing H4 or H2A.Z acetylation levels enabled us to reveal distinct roles for these modifications in H2A.Z deposition and RNA transcription. Histone modification and deposition are key regulators of transcription. Here, Kraus et al. provide a quantitative histone acetylome for Trypanosoma brucei, identify histone modifications enriched at transcription start sites, and show how H4 and H2A.Z acetylation affect histone deposition and transcription in trypanosomes

    Bacterial overgrowth during treatment with omeprazole compared with cimetidine: a prospective randomised double blind study.

    No full text
    BACKGROUND: Gastric and duodenal bacterial overgrowth frequently occurs in conditions where diminished acid secretion is present. Omeprazole inhibits acid secretion more effectively than cimetidine and might therefore more frequently cause bacterial overgrowth. AIM: This controlled prospective study compared the incidence of gastric and duodenal bacterial overgrowth in patients treated with omeprazole or cimetidine. METHODS: 47 outpatients with peptic disease were randomly assigned to a four week treatment regimen with omeprazole 20 mg or cimetidine 800 mg daily. Gastric and duodenal juice were obtained during upper gastrointestinal endoscopy and plated for anaerobic and aerobic organisms. RESULTS: Bacterial overgrowth (> or = 10(5) cfu/ml) was present in 53% of the patients receiving omeprazole and in 17% receiving cimetidine (p < 0.05). The mean (SEM) number of gastric and duodenal bacterial counts was 6.0 (0.2) and 5.0 (0.2) respectively in the omeprazole group and 4.0 (0.2) and 4.0 (0.1) in the cimetidine group (p < 0.001 and < 0.01; respectively). Faecal type bacteria were found in 30% of the patients with bacterial overgrowth. Basal gastric pH was higher in patients treated with omeprazole compared with cimetidine (4.2 (0.5) versus 2.0 (0.2); p < 0.001) and in patients with bacterial overgrowth compared with those without bacterial overgrowth (5.1 (0.6) versus 2.0 (0.1); p < 0.0001). The nitrate, nitrite, and nitrosamine values in gastric juice did not increase after treatment with either cimetidine or omeprazole. Serum concentrations of vitamin B12, beta carotene, and albumin were similar before and after treatment with both drugs. CONCLUSIONS: These results show that the incidence of gastric and duodenal bacterial overgrowth is considerably higher in patients treated with omeprazole compared with cimetidine. This can be explained by more pronounced inhibition of gastric acid secretion. No patient developed signs of malabsorption or an increase of N-nitroso compounds. The clinical significance of these findings needs to be assessed in studies with long-term treatment with omeprazole, in particular in patients belonging to high risk groups such as HIV infected and intensive care units patients
    corecore