3 research outputs found

    Lung epithelial cells : upstream targets in type 2-high asthma

    No full text
    Over the last years, technological advances in the field of asthma have led to the identification of two disease endotypes, namely, type 2-high and type 2-low asthma, characterized by different pathophysiologic mechanisms at a cellular and molecular level. Although specific immune cells are important contributors to each of the recognized asthma endotype, the lung epithelium is now regarded as a crucial player able to orchestrate responses to inhaled environmental triggers such as allergens and microbes. The impact of the epithelium goes beyond its physical barrier. It is nowadays considered as a part of the innate immune system that can actively respond to insults. Activated epithelial cells, by producing a specific set of cytokines, trigger innate and adaptive immune cells to cause pathology. Here, we review how the epithelium contributes to the development of Th2 sensitization to allergens and asthma with a "type 2-high" signature, in both murine models and human studies of this asthma endotype. We also discuss epithelial responses to respiratory viruses, such as rhinovirus, respiratory syncytial virus, and SARS-CoV-2, and how these triggers influence not only asthma development but also asthma exacerbation. Finally, we also summarize the results of promising clinical trials using biologicals targeting epithelial-derived cytokines in asthmatic patients

    A Complement Atlas identifies interleukin 6 dependent alternative pathway dysregulation as a key druggable feature of COVID-19

    No full text
    To improve COVID-19 therapy, it is essential to understand the mechanisms driving critical illness. The complement system is an essential part of innate host defense that can also contribute to injury. All complement pathways have been implicated in COVID-19 pathogenesis, however the upstream drivers and downstream consequences on tissue injury remain ill-defined. Here, we demonstrate that complement activation is mediated by the alternative pathway and we provide a comprehensive atlas of the alterations in complement around the time of respiratory deterioration. Proteome and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal and myeloid cells in the production of complement, in addition to liver-derived factors. Upstream, IL-6 drives complement responses, linking complement dysregulation to approved COVID-19 therapies. In an exploratory proteomic study, C5 inhibition improves epithelial damage and markers of disease severity. Collectively, these results identify complement dysregulation as a key druggable feature of COVID-19

    Efficacy and safety of the investigational complement C5 inhibitor zilucoplan in patients hospitalized with COVID-19 : an open-label randomized controlled trial

    No full text
    Background The efficacy and safety of complement inhibition in COVID-19 patients is unclear. Methods A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO(2) below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. Results 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO(2) from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. Conclusion Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO(2)) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies
    corecore