17 research outputs found

    On motion analysis and elastic response of floating offshore wind turbines

    Get PDF
    Wind energy industry is expanded to offshore and deep water sites, primarily due to the stronger and more consistent wind fields. Floating offshore wind turbine (FOWT) concepts involve new engineering and scientific challenges. A combination of waves, current, and wind loads impact the structures. Often under extreme cases, and sometimes in operational conditions, magnitudes of these loads are comparable with each other. The loads and responses may be large, and simultaneous consideration of the combined environmental loads on the response of the structure is essential. Moreover, FOWTs are often large structures and the load frequencies are comparable to the structural frequencies. This requires a fluid–structure–fluid elastic analysis which adds to the complexity of the problem. Here, we present a critical review of the existing approaches that are used to (i) estimate the hydrodynamic and aerodynamic loads on FOWTs, and (ii) to determine the structures’ motion and elastic responses due to the combined loads. Particular attention is given to the coupling of the loads and responses, assumptions made under each of the existing solution approaches, their limitations, and restrictions, where possible, suggestions are provided on areas where further studies are required

    On Motion and Hydroelastic Analysis of a Floating Offshore Wind Turbine

    Get PDF
    This study is concerned with motion analysis and hydroelastic response of a floating offshore wind turbine to wave loads. The novel floating structure, made of prestressed concrete, is designed to support multiple wind turbines, and it rotates according to the environmental loads to face the incoming wind. The floating structure is attached to a mooring line that allows the rotation of the structure in response to the environmental loads. The floating structure is an equilateral triangular platform. The wind turbines are located at the vertices. Due to the dimensional characteristics of the structure, elasticity of the floating platform plays an important role in its dynamics. While the dynamic response of the structure is driven by both aerodynamic and hydrodynamic loads, this study focuses on the motion and elastic response of the novel floating structure to the hydrodynamic loads only. The three dimensional hydrodynamic loads on the floating structure are obtained by use of the constant panel approach of the Green function method, subject to linear mooring loads. A finite element analysis is carried out for the calculation of the elastic response of the structure. Computations of the integrated linear structurefluid-structure interaction problem are performed in frequency domain using HYDRAN, a computer program written for the linear dynamic analysis of rigid and flexible bodies. Results presented here include the response amplitude operators of both the rigid and flexible bodies to incoming waves of various frequencies and directions. Also presented are the wave-induced stresses on the floating body, and the elastic deformations

    Water current load on arrays of rectangular plates

    Get PDF
    Water current interaction with arrays of plates is studied by use of the computational fluid dynamics focusing on hydrokinetic energy production applications. Various configurations of arrays of equidistant rectangular plates are considered and the current-induced pressure and velocity distribution, and the hydrodynamic forces on the individual plates are computed. First, current interaction with a singe plate in a three-dimensional current tank is studied, and results are compared with laboratory measurements for which very good agreement is observed. Next, the velocity and the pressure fields around an array of plates are determined and the forces on individual plates are computed and compared with the empirical relations. It is found that the current-induced force on the leading plate in the array is substantially different from those on the downstream plates, which experience negative forces, due to the change of the flow field. In three parametric studies, the effect of plate spacing, the number of plates and the relative water depth on the current-induced forces is investigated. It is shown that the relative size of the plates, and the number of plates in an array play significant role on the current-induced loads. Finally, the relative direction of the plates and the incoming flow is changed and its effect on the hydrodynamic forces on the plates is studied in a three-dimensional computational tank. The current loads on an oriented set of plates is shown to be remarkably different, when compared with those perpendicular to the current direction. It is concluded that the current-induced loads on an array of plates cannot be estimated by empirical relations, and specific computations, similar to those shown here, or laboratory experiments are required to investigate the current load

    Hydro- and aero-elastic response of floating offshore wind turbines to combined waves and wind in frequency domain

    Get PDF
    An analytical approach and numerical solution to determine coupled aeroelastic and hydroelastic response of floating offshore wind turbines of arbitrary shape to combined wind and wave loads is presented. The model considers simultaneously the aerodynamic and hydrodynamic loads on an FOWT and integrates these with finite element method for structural analysisdue to the combined loads. The hydrodynamic and aerodynamic loads are determined based on the linear wave diffraction theory and steady blade element momentum method, respectively, and the solution is obtained in frequency domain. The structure may be fixed or floating, located in arbitrary water depth, and may host single or multiple wind towers. The model captures the complete translational and rotational motions of the body in three dimensions, and the elasticity of the blades, tower and the floating platform. To assess the performance of the model, rigid and elastic responses of a FOWT to combined wave and wind loads are computed and compared with available laboratory measurements and other theoretical approacheswhere possible, and overall very good agreement is observed. The model developed in this study addresses directly three shortcomings of existing approaches used for the analysis of FOWTs, namely (i) determination of the elastic responses of the entire structure including the floating platform, (ii) analysis of the motion and elastic response of FOWTs in frequency domain, and (iii) assessment of responses of FOWTs with single or multiple wind towers

    Hydroelastic response of wind-tracing floating offshore structures to irregular waves and wind

    Get PDF
    Motion and hydroelastic responses of floating offshore wind turbines (FOWT) to irregular waves and wind loads are studied by use of a numerical coupling approach in frequency domain. The hydrodynamic and aerodynamic loads on the structure are obtained by linear wave diffraction theory and the steady blade element momentum method, respectively, and the structural responses are computed by finite element method. Rigid body responses of a SPAR to combined irregular waves (JONSWAP spectrum)and steady wind are computed and compared with existing laboratory measurements. Good agreement between the computed responses of the structure and existing laboratory data is observed. Next, the rigid and hydroelastic responses of a new concept of FOWT, where multiple towers are placed on the floating platform, to irregular waves and wind are studied. The FOWT consists of an equilateral triangular platform that supports three 5 MW NREL wind turbines on its corners. The FOWT is attached to the seabed with turret-bearing system that allows for the rotation of the structure in response to environmental loads, hence wind-tracing FOWT. It is found that the hydroelastic motions of the wind-tracing FOWT results in significant changes on its heave and pitch responses compared with its rigid body motions

    Motion and elastic response of wind-tracing floating offshore wind turbines

    Get PDF
    AbstractA multi-unit floating offshore wind turbine concept, the wind-tracing floating offshore wind turbine, is introduced. In this concept, the floating structure is a triangular platform that hosts three 5 MW wind turbines and is moored to the seabed with a turret-bearing mooring system. This mooring system allows the structure to rotate about the turret such that the total yaw moment by the environmental load on the turret is minimized. In this study, the optimum properties of the mooring lines and the location of the turret are determined. To identify the preferred location of the turret, the responses of the structure to combined co-directional and misaligned wind and wave loads are computed. The motions of the structure are obtained with a frequency-domain numerical model integrated with structural finite-element method for hydroelastic and aeroelastic analyses. The hydrodynamic and aerodynamic loads are obtained by wave diffraction theory and steady blade element momentum method, respectively. Finally, with the optimum configuration of the mooring system, the motion and aero- and hydroelastic responses of the fully flexible wind-tracing floating offshore wind turbines to combined waves and wind loads are determined and discussed.</jats:p

    Dynamic response of multi-unit floating offshore wind turbines to wave, current and wind loads

    Get PDF
    Motion of a multi-unit wind-tracing floating offshore wind turbine (FOWT) to combined wave–current and wind is obtained in the frequency-domain. The linear diffraction wave theory with a Green function for small current speeds and the blade-element momentum method are used for the hydrodynamic and aerodynamic analysis, respectively. A finite-element method is coupled with the hydrodynamic and aerodynamic equations to obtain the elastic responses of the FOWT to the environmental loads. The wind-tracing FOWT consists of three 5 MW wind turbines installed at the corners of an equilateral triangular platform. The platform is connected to the seabed through a turret-bearing mooring system, allowing the structure to rotate and face the dominant wind direction; hence, the multi-unit FOWT is called the wind-tracing FOWT. In this study, rigid-body responses of the wind-tracing FOWT to waves and wind are compared with those to combined wave, current, and wind loads for several current speeds and various wave heading angles. For a chosen current speed and wave heading angle, hydro- and aeroelastic responses of the wind-tracing FOWT to combined waves, current, and wind are obtained and compared with those of the rigid structure. Discussion is provided on the effect of the wave–current interaction on the motion and elastic responses of the wind-tracing FOWT. The numerical results show that under the rated wind speed, the motion of the wind-tracing FOWT is mainly governed by the wave-induced hydrodynamic forces and moments and the presence of current results in larger elastic motion of the FOWT to the environmental loads

    Dynamic response of multi-unit floating offshore wind turbines to wave, current and wind loads

    Get PDF
    Motion of a multi-unit wind-tracing floating offshore wind turbine (FOWT) to combined wave–current and wind is obtained in the frequency-domain. The linear diffraction wave theory with a Green function for small current speeds and the blade-element momentum method are used for the hydrodynamic and aerodynamic analysis, respectively. A finite-element method is coupled with the hydrodynamic and aerodynamic equations to obtain the elastic responses of the FOWT to the environmental loads. The wind-tracing FOWT consists of three 5 MW wind turbines installed at the corners of an equilateral triangular platform. The platform is connected to the seabed through a turret-bearing mooring system, allowing the structure to rotate and face the dominant wind direction; hence, the multi-unit FOWT is called the wind-tracing FOWT. In this study, rigid-body responses of the wind-tracing FOWT to waves and wind are compared with those to combined wave, current, and wind loads for several current speeds and various wave heading angles. For a chosen current speed and wave heading angle, hydro- and aeroelastic responses of the wind-tracing FOWT to combined waves, current, and wind are obtained and compared with those of the rigid structure. Discussion is provided on the effect of the wave–current interaction on the motion and elastic responses of the wind-tracing FOWT. The numerical results show that under the rated wind speed, the motion of the wind-tracing FOWT is mainly governed by the wave-induced hydrodynamic forces and moments and the presence of current results in larger elastic motion of the FOWT to the environmental loads
    corecore