632 research outputs found

    Two-photon double ionization of helium in the region of photon energies 42-50 eV

    Get PDF
    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 42 to 50 eV. Our computational procedure relies on a numerical solution of the time-dependent Schr\"odinger equation on a square-integrable basis and subsequent projection of this solution on a set of final states describing two electrons in continuum. Close to the threshold, we reproduce results previously known from the literature. The region 47-50 eV seems to have been previously unexplored. Our results suggest that TICS, as a function of the photon energy, grows monotonously in the region 42-50 eV. We also present fully resolved triple differential cross sections for selected photon energies.Comment: 12 pages, 3 figure

    Non-Markovian master equation for a damped driven two-state system

    Full text link
    We present a detailed microscopic derivation for a non-Markovian master equation for a driven two-state system interacting with a general structured reservoir. The master equation is derived using the time-convolutionless projection operator technique in the limit of weak coupling between the two-state quantum system and its environment. We briefly discuss the Markov approximation, the secular approximation and their validity.Comment: 6 pages, submitted to proceedings of CEWQO200

    Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr

    Get PDF
    Two-photon excitation of a single-photon forbidden Auger resonance has been observed and investigated using the intense extreme ultraviolet radiation from the free electron laser in Hamburg. At the wavelength 26.9 nm (46 eV) two photons promoted a 3d core electron to the outer 4d shell. The subsequent Auger decay, as well as several nonlinear above threshold ionization processes, were studied by electron spectroscopy. The experimental data are in excellent agreement with theoretical predictions and analysis of the underlying multiphoton processes

    Evaluation of Compton scattering sequence reconstruction algorithms for a portable position sensitive radioactivity detector based on pixelated Cd(Zn)Te crystals

    Full text link
    We present extensive simulation studies on the performance of algorithms for the Compton sequence reconstruction used for the development of a portable spectroscopic instrument (COCAE), with the capability to localize and identify radioactive sources, by exploiting the Compton scattering imaging. Various Compton Sequence reconstruction algorithms have been compared using a large number of simulated events. These algorithms are based on Compton kinematics, as well as on statistical test criteria that exploit the redundant information of events having two or more photon interactions in the active detector's volume. The efficiency of the best performing technique is estimated for a wide range of incident gamma-ray photons emitted from point-like gamma sources.Comment: 16 pages, 17 figure

    Passage-time statistics of superradiant light pulses from Bose-Einstein condensates

    Full text link
    We discuss the passage-time statistics of superradiant light pulses generated during the scattering of laser light from an elongated atomic Bose-Einstein condensate. Focusing on the early-stage of the phenomenon, we analyze the corresponding probability distributions and their scaling behaviour with respect to the threshold photon number and the coupling strength. With respect to these parameters, we find quantities which only vary significantly during the transition between the Kapitza Dirac and the Bragg regimes. A possible connection of the present observations to Brownian motion is also discussed.Comment: Close to the version published in J. Phys.

    Tunable photonic band gaps with coherently driven atoms in optical lattices

    Full text link
    Optical lattice loaded with cold atoms can exhibit a tunable photonic band gap for a weak probe field under the conditions of electromagnetically induced transparency. This system possesses a number of advantageous properties, including reduced relaxation of Raman coherence and the associated probe absorption, and simultaneous enhancement of the index modulation and the resulting reflectivity of the medium. This flexible system has a potential to serve as a testbed of various designs for the linear and nonlinear photonic band gap materials at a very low light level and can be employed for realizing deterministic entanglement between weak quantum fields

    Control of atomic decay rates via manipulation of reservoir mode frequencies

    Full text link
    We analyse the problem of a two-level atom interacting with a time-dependent dissipative environment modelled by a bath of reservoir modes. In the model of this paper the principal features of the reservoir structure remain constant in time, but the microscopic structure does not. In the context of an atom in a leaky cavity this corresponds to a fixed cavity and a time-dependent external bath. In this situation we show that by chirping the reservoir modes sufficiently fast it is possible to inhibit, or dramatically enhance the decay of the atomic system, even though the gross reservoir structure is fixed. Thus it is possible to extract energy from a cavity-atom system faster than the empty cavity rate. Similar, but less dramatic effects are possible for moderate chirps where partial trapping of atomic population is also possible.Comment: 12 pages, 9 figure

    Simulated Performance Of Algorithms For The Localization Of Radioactive Sources From A Position Sensitive Radiation Detecting System (COCAE)

    Full text link
    Simulation studies are presented regarding the performance of algorithms that localize point-like radioactive sources detected by a position sensitive portable radiation instrument (COCAE). The source direction is estimated by using the List Mode Maximum Likelihood Expectation Maximization (LM-ML-EM) imaging algorithm. Furthermore, the source-to-detector distance is evaluated by three different algorithms based on the photo-peak count information of each detecting layer, on the quality of the reconstructed source image as well as on the triangulation method. These algorithms have been tested on a large number of simulated photons in a wide energy range (from 200keV up to 2MeV) emitted by point-like radioactive sources located at different orientation and source-to-detector distances.Comment: 8 pages, 7 figures, 11th International Conference on Applications of Nuclear Techniques, Crete, Greece, June 12-18, 201
    corecore