29 research outputs found

    Plant Species\u27 Origin Predicts Dominance and Response to Nutrient Enrichment and Herbivores in Global Grasslands

    Get PDF
    Exotic species dominate many communities; however the functional significance of species\u27 biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands

    HOW INTERACTIONS BETWEEN ECOLOGY AND EVOLUTION INFLUENCE CONTEMPORARY INVASION DYNAMICS

    No full text
    The literature on biological invasions has principally focused on understanding the ecological controls and consequences of invasions. Invading populations, however, often experience rapid evolutionary changes associated with or soon after their introduction. Ecological and evolutionary processes can, therefore, potentially interact over relatively short timescales. A number of recent studies have begun to document these interactions and their effect on short-term invasion dynamics: (1) The degree to which founder effects, drift, and inbreeding alter the genetic composition of introduced populations is mediated by migration and dispersal patterns, the population dynamics of founding populations, and life history. The genetic changes associated with founding can themselves feed back on population dynamics and life history. (2) Patterns of human-mediated dispersal and landscape change can influence the frequency and pattern of hybridization, which in turn can alter invasion dynamics. These altered invasion dynamics can influence the frequency and pattern of subsequent hybridization and introgression. (3) Strong selection can rapidly generate ecotypic specialization. Dispersal patterns, founder effects, genetic system, and life history influence the rate of local adaptation, its persistence, and its distribution in a landscape. (4) Introduced populations are subject to selection on life history traits and can serve as selective pressure on the life history traits of native populations. Life history evolution in both natives and aliens can influence ecological interactions and population dynamics, which in turn can influence the evolution of life history. Too few studies have investigated these interactions to definitively assess their overall generality or to determine how the.-relative interaction strength of ecology and evolution varies across taxa or ecosystems. However, the studies that do exist report interactions from a wide breadth of taxa and from all stages in the invasion process. This suggests that ecological-evolutionary interactions may have a more pervasive influence on contemporary invasion dynamics than previously appreciated, and that at least in some situations an explicit understanding of the contemporary co-influence of ecology and evolution can produce more effective and predictive control strategies

    Book reviews

    No full text

    Book reviews

    No full text

    Plant community variation across a puna landscape in the Chilean Andes

    No full text
    We describe patterns of plant species and growth form abundance in the puna vegetation of Parque Nacional Lauca, Chile. At more than 4,300 m, the extreme habitat of the study site supported relatively few species. These few species, however, represented a diverse array of growth forms that were organized with respect to distinct environmental gradients. Both species richness and growth form diversity increased with the degree of habitat rockiness and on more xeric north and east facing slopes. These xeric, rocky sites supported the greatest overall abundance of cushion forms. Less rocky sites with more soil development supported a greater abundance of tussock grass and shrub forms. Congeneric species occupied distinct microhabitats and were often markedly divergent in growth form. These patterns suggest that water and thermal stress are critical forces shaping functional form as well as community organization in the high Andean puna. © 2006 Sociedad de Biología de Chile
    corecore