10 research outputs found

    Imaging-based frequency mapping for cochlear implants – Evaluated using a daily randomized controlled trial

    Get PDF
    BackgroundDue to variation in electrode design, insertion depth and cochlear morphology, patients with a cochlear implant (CI) often have to adapt to a substantial mismatch between the characteristic response frequencies of cochlear neurons and the stimulus frequencies assigned to electrode contacts. We introduce an imaging-based fitting intervention, which aimed to reduce frequency-to-place mismatch by aligning frequency mapping with the tonotopic position of electrodes. Results were evaluated in a novel trial set-up where subjects crossed over between intervention and control using a daily within-patient randomized approach, immediately from the start of CI rehabilitation.MethodsFourteen adult participants were included in this single-blinded, daily randomized clinical trial. Based on a fusion of pre-operative imaging and a post-operative cone beam CT scan (CBCT), mapping of electrical input was aligned to natural place-pitch arrangement in the individual cochlea. That is, adjustments to the CI’s frequency allocation table were made so electrical stimulation of frequencies matched as closely as possible with corresponding acoustic locations in the cochlea. For a period of three months, starting at first fit, a scheme was implemented whereby the blinded subject crossed over between the experimental and standard fitting program using a daily randomized wearing schedule, and thus effectively acted as their own control. Speech outcomes (such as speech intelligibility in quiet and noise, sound quality and listening effort) were measured with both settings throughout the study period.ResultsOn a group level, standard fitting obtained subject preference and showed superior results in all outcome measures. In contrast, two out of fourteen subjects preferred the imaging-based fitting and correspondingly had better speech understanding with this setting compared to standard fitting.ConclusionOn average, cochlear implant fitting based on individual tonotopy did not elicit higher speech intelligibility but variability in individual results strengthen the potential for individualized frequency fitting. The novel trial design proved to be a suitable method for evaluation of experimental interventions in a prospective trial setup with cochlear implants

    Extending the audiogram with loudness growth: The complementarity of electric and acoustic hearing in bimodal patients.

    No full text
    IntroductionClinically, recording hearing detection thresholds and representing them in an audiogram is the most common way of evaluating hearing loss and starting the fitting of hearing devices. As an extension, we present the loudness audiogram, which does not only show auditory thresholds but also visualizes the full course of loudness growth across frequencies. The benefit of this approach was evaluated in subjects who rely on both electric (cochlear implant) and acoustic (hearing aid) hearing.MethodsIn a group of 15 bimodal users, loudness growth was measured with the cochlear implant and hearing aid separately using a loudness scaling procedure. Loudness growth curves were constructed, using a novel loudness function, for each modality and then integrated in a graph plotting frequency, stimulus intensity level, and loudness perception. Bimodal benefit, defined as the difference between wearing a cochlear implant and hearing aid together versus wearing only a cochlear implant, was assessed for multiple speech outcomes.ResultsLoudness growth was related to bimodal benefit for speech recognition in noise and to some aspects of speech quality. No correlations between loudness and speech in quiet were found. Patients who had predominantly unequal loudness input from the hearing aid, gained more bimodal benefit for speech recognition in noise compared to those patients whose hearing aid provided mainly equivalent input.ConclusionResults show that loudness growth is related to bimodal benefit for speech recognition in noise and to some aspects of speech quality. Subjects who had different input from the hearing aid compared to CI, generally gained more bimodal benefit compared to those patients whose hearing aid provided mainly equivalent input. This suggests that bimodal fitting to create equal loudness at all frequencies may not always be beneficial for speech recognition

    Machine learning for risk stratification in the emergency department (MARS-ED) study protocol for a randomized controlled pilot trial on the implementation of a prediction model based on machine learning technology predicting 31-day mortality in the emergency department

    No full text
    Abstract Background Many prediction models have been developed to help identify emergency department (ED) patients at high risk of poor outcome. However, these models often underperform in clinical practice and their actual clinical impact has hardly ever been evaluated. We aim to perform a clinical trial to investigate the clinical impact of a prediction model based on machine learning (ML) technology. Methods The study is a prospective, randomized, open-label, non-inferiority pilot clinical trial. We will investigate the clinical impact of a prediction model based on ML technology, the RISKINDEX, which has been developed to predict the risk of 31-day mortality based on the results of laboratory tests and demographic characteristics. In previous studies, the RISKINDEX was shown to outperform internal medicine specialists and to have high discriminatory performance. Adults patients (18 years or older) will be recruited in the ED. All participants will be randomly assigned to the control group or the intervention group in a 1:1 ratio. Participants in the control group will receive care as usual in which the study team asks the attending physicians questions about their clinical intuition. Participants in the intervention group will also receive care as usual, but in addition to asking the clinical impression questions, the study team presents the RISKINDEX to the attending physician in order to assess the extent to which clinical treatment is influenced by the results. Discussion This pilot clinical trial investigates the clinical impact and implementation of an ML based prediction model in the ED. By assessing the clinical impact and prognostic accuracy of the RISKINDEX, this study aims to contribute valuable insights to optimize patient care and inform future research in the field of ML based clinical prediction models. Trial registration ClinicalTrials.gov NCT05497830. Machine Learning for Risk Stratification in the Emergency Department (MARS-ED). Registered on August 11, 2022. URL: https://clinicaltrials.gov/study/NCT05497830

    CT in relation to RT-PCR in diagnosing COVID-19 in The Netherlands: A prospective study

    No full text
    INTRODUCTION: Early differentiation between emergency department (ED) patients with and without corona virus disease (COVID-19) is very important. Chest CT scan may be helpful in early diagnosing of COVID-19. We investigated the diagnostic accuracy of CT using RT-PCR for SARS-CoV-2 as reference standard and investigated reasons for discordant results between the two tests. METHODS: In this prospective single centre study in the Netherlands, all adult symptomatic ED patients had both a CT scan and a RT-PCR upon arrival at the ED. CT results were compared with PCR test(s). Diagnostic accuracy was calculated. Discordant results were investigated using discharge diagnoses. RESULTS: Between March 13th and March 24th 2020, 193 symptomatic ED patients were included. In total, 43.0% of patients had a positive PCR and 56.5% a positive CT, resulting in a sensitivity of 89.2%, specificity 68.2%, likelihood ratio (LR)+ 2.81 and LR- 0.16. Sensitivity was higher in patients with high risk pneumonia (CURB-65 score ≥3; n = 17, 100%) and with sepsis (SOFA score ≥2; n = 137, 95.5%). Of the 35 patients (31.8%) with a suspicious CT and a negative RT-PCR, 9 had another respiratory viral pathogen, and in 7 patients, COVID-19 was considered likely. One of nine patients with a non-suspicious CT and a positive PCR had developed symptoms within 48 hours before scanning. DISCUSSION: The accuracy of chest CT in symptomatic ED patients is high, but used as a single diagnostic test, CT can not safely diagnose or exclude COVID-19. However, CT can be used as a quick tool to categorize patients into “probably positive” and “probably negative” cohorts

    Image_1_Imaging-based frequency mapping for cochlear implants – Evaluated using a daily randomized controlled trial.TIFF

    No full text
    BackgroundDue to variation in electrode design, insertion depth and cochlear morphology, patients with a cochlear implant (CI) often have to adapt to a substantial mismatch between the characteristic response frequencies of cochlear neurons and the stimulus frequencies assigned to electrode contacts. We introduce an imaging-based fitting intervention, which aimed to reduce frequency-to-place mismatch by aligning frequency mapping with the tonotopic position of electrodes. Results were evaluated in a novel trial set-up where subjects crossed over between intervention and control using a daily within-patient randomized approach, immediately from the start of CI rehabilitation.MethodsFourteen adult participants were included in this single-blinded, daily randomized clinical trial. Based on a fusion of pre-operative imaging and a post-operative cone beam CT scan (CBCT), mapping of electrical input was aligned to natural place-pitch arrangement in the individual cochlea. That is, adjustments to the CI’s frequency allocation table were made so electrical stimulation of frequencies matched as closely as possible with corresponding acoustic locations in the cochlea. For a period of three months, starting at first fit, a scheme was implemented whereby the blinded subject crossed over between the experimental and standard fitting program using a daily randomized wearing schedule, and thus effectively acted as their own control. Speech outcomes (such as speech intelligibility in quiet and noise, sound quality and listening effort) were measured with both settings throughout the study period.ResultsOn a group level, standard fitting obtained subject preference and showed superior results in all outcome measures. In contrast, two out of fourteen subjects preferred the imaging-based fitting and correspondingly had better speech understanding with this setting compared to standard fitting.ConclusionOn average, cochlear implant fitting based on individual tonotopy did not elicit higher speech intelligibility but variability in individual results strengthen the potential for individualized frequency fitting. The novel trial design proved to be a suitable method for evaluation of experimental interventions in a prospective trial setup with cochlear implants.</p

    Image_3_Imaging-based frequency mapping for cochlear implants – Evaluated using a daily randomized controlled trial.TIFF

    No full text
    BackgroundDue to variation in electrode design, insertion depth and cochlear morphology, patients with a cochlear implant (CI) often have to adapt to a substantial mismatch between the characteristic response frequencies of cochlear neurons and the stimulus frequencies assigned to electrode contacts. We introduce an imaging-based fitting intervention, which aimed to reduce frequency-to-place mismatch by aligning frequency mapping with the tonotopic position of electrodes. Results were evaluated in a novel trial set-up where subjects crossed over between intervention and control using a daily within-patient randomized approach, immediately from the start of CI rehabilitation.MethodsFourteen adult participants were included in this single-blinded, daily randomized clinical trial. Based on a fusion of pre-operative imaging and a post-operative cone beam CT scan (CBCT), mapping of electrical input was aligned to natural place-pitch arrangement in the individual cochlea. That is, adjustments to the CI’s frequency allocation table were made so electrical stimulation of frequencies matched as closely as possible with corresponding acoustic locations in the cochlea. For a period of three months, starting at first fit, a scheme was implemented whereby the blinded subject crossed over between the experimental and standard fitting program using a daily randomized wearing schedule, and thus effectively acted as their own control. Speech outcomes (such as speech intelligibility in quiet and noise, sound quality and listening effort) were measured with both settings throughout the study period.ResultsOn a group level, standard fitting obtained subject preference and showed superior results in all outcome measures. In contrast, two out of fourteen subjects preferred the imaging-based fitting and correspondingly had better speech understanding with this setting compared to standard fitting.ConclusionOn average, cochlear implant fitting based on individual tonotopy did not elicit higher speech intelligibility but variability in individual results strengthen the potential for individualized frequency fitting. The novel trial design proved to be a suitable method for evaluation of experimental interventions in a prospective trial setup with cochlear implants.</p

    Image_2_Imaging-based frequency mapping for cochlear implants – Evaluated using a daily randomized controlled trial.TIF

    No full text
    BackgroundDue to variation in electrode design, insertion depth and cochlear morphology, patients with a cochlear implant (CI) often have to adapt to a substantial mismatch between the characteristic response frequencies of cochlear neurons and the stimulus frequencies assigned to electrode contacts. We introduce an imaging-based fitting intervention, which aimed to reduce frequency-to-place mismatch by aligning frequency mapping with the tonotopic position of electrodes. Results were evaluated in a novel trial set-up where subjects crossed over between intervention and control using a daily within-patient randomized approach, immediately from the start of CI rehabilitation.MethodsFourteen adult participants were included in this single-blinded, daily randomized clinical trial. Based on a fusion of pre-operative imaging and a post-operative cone beam CT scan (CBCT), mapping of electrical input was aligned to natural place-pitch arrangement in the individual cochlea. That is, adjustments to the CI’s frequency allocation table were made so electrical stimulation of frequencies matched as closely as possible with corresponding acoustic locations in the cochlea. For a period of three months, starting at first fit, a scheme was implemented whereby the blinded subject crossed over between the experimental and standard fitting program using a daily randomized wearing schedule, and thus effectively acted as their own control. Speech outcomes (such as speech intelligibility in quiet and noise, sound quality and listening effort) were measured with both settings throughout the study period.ResultsOn a group level, standard fitting obtained subject preference and showed superior results in all outcome measures. In contrast, two out of fourteen subjects preferred the imaging-based fitting and correspondingly had better speech understanding with this setting compared to standard fitting.ConclusionOn average, cochlear implant fitting based on individual tonotopy did not elicit higher speech intelligibility but variability in individual results strengthen the potential for individualized frequency fitting. The novel trial design proved to be a suitable method for evaluation of experimental interventions in a prospective trial setup with cochlear implants.</p

    Data_Sheet_1_Imaging-based frequency mapping for cochlear implants – Evaluated using a daily randomized controlled trial.docx

    No full text
    BackgroundDue to variation in electrode design, insertion depth and cochlear morphology, patients with a cochlear implant (CI) often have to adapt to a substantial mismatch between the characteristic response frequencies of cochlear neurons and the stimulus frequencies assigned to electrode contacts. We introduce an imaging-based fitting intervention, which aimed to reduce frequency-to-place mismatch by aligning frequency mapping with the tonotopic position of electrodes. Results were evaluated in a novel trial set-up where subjects crossed over between intervention and control using a daily within-patient randomized approach, immediately from the start of CI rehabilitation.MethodsFourteen adult participants were included in this single-blinded, daily randomized clinical trial. Based on a fusion of pre-operative imaging and a post-operative cone beam CT scan (CBCT), mapping of electrical input was aligned to natural place-pitch arrangement in the individual cochlea. That is, adjustments to the CI’s frequency allocation table were made so electrical stimulation of frequencies matched as closely as possible with corresponding acoustic locations in the cochlea. For a period of three months, starting at first fit, a scheme was implemented whereby the blinded subject crossed over between the experimental and standard fitting program using a daily randomized wearing schedule, and thus effectively acted as their own control. Speech outcomes (such as speech intelligibility in quiet and noise, sound quality and listening effort) were measured with both settings throughout the study period.ResultsOn a group level, standard fitting obtained subject preference and showed superior results in all outcome measures. In contrast, two out of fourteen subjects preferred the imaging-based fitting and correspondingly had better speech understanding with this setting compared to standard fitting.ConclusionOn average, cochlear implant fitting based on individual tonotopy did not elicit higher speech intelligibility but variability in individual results strengthen the potential for individualized frequency fitting. The novel trial design proved to be a suitable method for evaluation of experimental interventions in a prospective trial setup with cochlear implants.</p
    corecore