36 research outputs found

    Blinded by the Light: Connecting the Growth of Super-Massive Black Holes and Galaxy Evolution

    Get PDF
    For over 60 years, the scientific community has studied actively growing central super-massive black holes (active galactic nuclei -- AGN) but fundamental questions on their genesis and impact remain unanswered. Furthermore, AGN have long been purported to be the missing puzzle piece in understanding how galaxies grow and evolve to their present state. The field of SMBH-Galaxy Co-Evolution aims to answer the above questions by linking the growth of the super-massive blackholes to the growth of the galaxies they live in. Though, the very markers of AGN activity, an excess of light in almost every wavelength, also cause one of the greatest difficulties in accurately probing the properties of AGN Host galaxies: disentangling AGN emission from host-galaxy phenomena. In this thesis, I test key-predictions of popular SMBH-galaxy co-evolution theories using the combination of specific types of AGN and/or wavelength regimes to enable understanding of both the AGN and its host galaxy. I capitalized on the immense data archives fed by many of NASA's Great Observatories, constructed unique galaxy samples and developed novel statistical approaches. In this thesis, I detail how I uncover a tracer of direct evidence of AGN feedback in the local Universe (Lambrides et al. 2019), the discovery of a mis-classification of a large sample of heavily obscured AGN (Lambrides et al. 2020), and ruling out the most widely assumed triggering mechanism of obscured AGN using a novel method of merger identification(Lambrides et al. 2021a,b). From kiloparsecs to parsecs and back, testing galaxy evolution theories in both AGN triggering and feedback contexts is fundamental to understanding either process individually

    LACEwING: A New Moving Group Analysis Code

    Get PDF
    We present a new nearby young moving group (NYMG) kinematic membership analysis code, LocAting Constituent mEmbers In Nearby Groups (LACEwING), a new Catalog of Suspected Nearby Young Stars, a new list of bona fide members of moving groups, and a kinematic traceback code. LACEwING is a convergence-style algorithm with carefully vetted membership statistics based on a large numerical simulation of the Solar Neighborhood. Given spatial and kinematic information on stars, LACEwING calculates membership probabilities in 13 NYMGs and three open clusters within 100 pc. In addition to describing the inputs, methods, and products of the code, we provide comparisons of LACEwING to other popular kinematic moving group membership identification codes. As a proof of concept, we use LACEwING to reconsider the membership of 930 stellar systems in the Solar Neighborhood (within 100 pc) that have reported measurable lithium equivalent widths. We quantify the evidence in support of a population of young stars not attached to any NYMGs, which is a possible sign of new as-yet-undiscovered groups or of a field population of young stars

    Population Properties of Brown Dwarf Analogs to Exoplanets

    Get PDF
    We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age-calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color–magnitude, luminosity, and effective temperature. We find that gravity classification and photometric color clearly separate 5–130 Myr sources from \u3e3 Gyr field objects, but they do not correlate one to one with the narrower 5–130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1 and 4σ from the field sequences and the most extreme outlier switches between intermediate- and low-gravity sources either confirmed in a group or not. The absolute magnitudes of low-gravity sources from the J band through W3 show a flux redistribution when compared to equivalently typed field brown dwarfs that is correlated with spectral subtype. Low-gravity, late-type L dwarfs are fainter at J than the field sequence but brighter by W3. Low-gravity M dwarfs are \u3e1 mag brighter than field dwarfs in all bands from J through W3. Clouds, which are a far more dominant opacity source for L dwarfs, are the likely cause. On color–magnitude diagrams, the latest-type, low-gravity L dwarfs drive the elbow of the L/T transition up to 1 mag redder and 1 mag fainter than field dwarfs at M J but are consistent with or brighter than the elbow at M W1 and M W2. We conclude that low-gravity dwarfs carry an extreme version of the cloud conditions of field objects to lower temperatures, which logically extends into the lowest-mass, directly imaged exoplanets. Furthermore, there is an indication on color-magnitude diagrams (CMDs; such as M J versus (J–W2)) of increasingly redder sequences separated by gravity classification, although it is not consistent across all CMD combinations. Examining bolometric luminosities for planets and low-gravity objects, we confirm that (in general) young M dwarfs are overluminous while young L dwarfs are normal compared to the field. Using model extracted radii, this translates into normal to slightly warmer M dwarf temperatures compared to the field sequence and lower temperatures for L dwarfs with no obvious correlation with the assigned moving group

    Missing Giants: Predictions on Dust-Obscured Galaxy Stellar Mass Assembly Throughout Cosmic Time

    Full text link
    Due to their extremely dust-obscured nature, much uncertainty still exists surrounding the stellar mass growth and content in dusty, star-forming galaxies (DSFGs) at z>1z>1. In this work, we present a numerical model built using empirical data on DSFGs to estimate their stellar mass contributions across the first ∼\sim10 Gyr of cosmic time. We generate a dust-obscured stellar mass function that extends beyond the mass limit of star-forming stellar mass functions in the literature, and predict that massive DSFGs constitute as much as 50−100%50-100\% of all star-forming galaxies with M ≥1011\ge10^{11}M⊙_\odot at z>1z>1. We predict the number density of massive DSFGs and find general agreement with observations, although more data is needed to narrow wide observational uncertainties. We forward model mock massive DSFGs to their quiescent descendants and find remarkable agreement with observations from the literature demonstrating that, to first order, massive DSFGs are a sufficient ancestral population to describe the prevalence of massive quiescent galaxies at z>1z>1. We predict that massive DSFGs and their descendants contribute as much as 25−60%25-60\% to the cosmic stellar mass density during the peak of cosmic star formation, and predict an intense epoch of population growth during the ∼1\sim1 Gyr from z=6z=6 to 3 during which the majority of the most massive galaxies at high-zz grow and then quench. Future studies seeking to understand massive galaxy growth and evolution in the early Universe should strategize synergies with data from the latest observatories (e.g. JWST and ALMA) to better include the heavily dust-obscured galaxy population.Comment: 22 pages, 9 figures, submitted to Ap

    LACEwING: A New Moving Group Analysis Code

    Get PDF
    We present a new nearby young moving group (NYMG) kinematic membership analysis code, LocAting Constituent mEmbers In Nearby Groups (LACEwING), a new Catalog of Suspected Nearby Young Stars, a new list of bona fide members of moving groups, and a kinematic traceback code. LACEwING is a convergence-style algorithm with carefully vetted membership statistics based on a large numerical simulation of the Solar Neighborhood. Given spatial and kinematic information on stars, LACEwING calculates membership probabilities in 13 NYMGs and three open clusters within 100 pc. In addition to describing the inputs, methods, and products of the code, we provide comparisons of LACEwING to other popular kinematic moving group membership identification codes. As a proof of concept, we use LACEwING to reconsider the membership of 930 stellar systems in the Solar Neighborhood (within 100 pc) that have reported measurable lithium equivalent widths. We quantify the evidence in support of a population of young stars not attached to any NYMGs, which is a possible sign of new as-yet-undiscovered groups or of a field population of young stars
    corecore