4,319 research outputs found
Roughness correction to the Casimir force : Beyond the Proximity Force Approximation
We calculate the roughness correction to the Casimir effect in the parallel
plates geometry for metallic plates described by the plasma model. The
calculation is perturbative in the roughness amplitude with arbitrary values
for the plasma wavelength, the plate separation and the roughness correlation
length. The correction is found to be always larger than the result obtained in
the Proximity Force Approximation.Comment: 7 pages, 3 figures, v2 with minor change
Lateral Casimir force beyond the Proximity Force Approximation
We argue that the appropriate variable to study a non trivial geometry
dependence of the Casimir force is the lateral component of the Casimir force,
which we evaluate between two corrugated metallic plates outside the validity
of the Proximity Force Approximation (PFA). The metallic plates are described
by the plasma model, with arbitrary values for the plasma wavelength, the plate
separation and the corrugation period, the corrugation amplitude remaining the
smallest length scale. Our analysis shows that in realistic experimental
situations the Proximity Force Approximation overestimates the force by up to
30%.Comment: 4 pages. Identical to v1, which was accidentally replaced by a
different paper (quant-ph/0610026
A circuit modeling technique for the ISO 7637-3 capacitive coupling clamp test
In this paper, we propose a transmission-line modeling technique for the ISO 7637-3 capacitive coupling clamp (CCC) test. Besides modeling the test bench, special attention is devoted to the CCC itself, for which an equivalent circuit is constructed based on the concept of surface transfer impedance and surface transfer admittance. The overall model is validated by means of measurements using a nonlinear circuit as device-under-test, as such demonstrating the appositeness to mimick the CCC test in simulations during the design phase
Casimir effect with rough metallic mirrors
We calculate the second order roughness correction to the Casimir energy for
two parallel metallic mirrors. Our results may also be applied to the
plane-sphere geometry used in most experiments. The metallic mirrors are
described by the plasma model, with arbitrary values for the plasma wavelength,
the mirror separation and the roughness correlation length, with the roughness
amplitude remaining the smallest length scale for perturbation theory to hold.
From the analysis of the intracavity field fluctuations, we obtain the
Casimir energy correction in terms of generalized reflection operators, which
account for diffraction and polarization coupling in the scattering by the
rough surfaces. We present simple analytical expressions for several limiting
cases, as well as numerical results that allow for a reliable calculation of
the roughness correction in real experiments. The correction is larger than the
result of the Proximity Force Approximation, which is obtained from our theory
as a limiting case (very smooth surfaces).Comment: 16 page
Thermal Casimir force between nanostructured surfaces
We present detailed calculations for the Casimir force between a plane and a
nanostructured surface at finite temperature in the framework of the scattering
theory. We then study numerically the effect of finite temperature as a
function of the grating parameters and the separation distance. We also infer
non-trivial geometrical effects on the Casimir interaction via a comparison
with the proximity force approximation. Finally, we compare our calculations
with data from experiments performed with nanostructured surfaces
Vacuum induced torque between corrugated metallic plates
We study the torque arising between two corrugated metallic plates due to the
interaction with electromagnetic vacuum. This Casimir torque can be measured
with torsion pendulum techniques for separation distances as large as 1m.
It allows one to probe the nontrivial geometry dependence of the Casimir energy
in a configuration which can be evaluated theoretically with accuracy. In the
optimal experimental configuration, the commonly used proximity force
approximation turns out to overestimate the torque by a factor 2 or larger.Comment: 7 pages, 4 figures, to appear in Europhysics Letters. Technical
problem with eps file for figure 4 was fixe
Classical Casimir interaction in the plane-sphere geometry
We study the Casimir interaction in the plane-sphere geometry in the
classical limit of high temperatures. In this limit, the finite conductivity of
the metallic plates needs to be taken into account. For the Drude model, the
classical Casimir interaction is nevertheless found to be independent of the
conductivity so that it can be described by a single universal function
depending only on the aspect ratio where is the interplate distance
and the sphere radius. This universal function differs from the one found
for perfect reflectors and is in principle amenable to experimental tests. The
asymptotic approach of the exact result to the Proximity Force Approximation
appears to be well fitted by polynomial expansions in .Comment: Updated version with minor modifications and addition of a referenc
Casimir torque between corrugated metallic plates
We consider two parallel corrugated plates and show that a Casimir torque
arises when the corrugation directions are not aligned. We follow the
scattering approach and calculate the Casimir energy up to second order in the
corrugation amplitudes, taking into account nonspecular reflections,
polarization mixing and the finite conductivity of the metals. We compare our
results with the proximity force approximation, which overestimates the torque
by a factor 2 when taking the conditions that optimize the effect. We argue
that the Casimir torque could be measured for separation distances as large as
1 Comment: 7 pages, 3 figures, contribution to QFEXT07 proceeding
Field fluctuations near a conducting plate and Casimir-Polder forces in the presence of boundary conditions
We consider vacuum fluctuations of the quantum electromagnetic field in the
presence of an infinite and perfectly conducting plate. We evaluate how the
change of vacuum fluctuations due to the plate modifies the Casimir-Polder
potential between two atoms placed near the plate. We use two different methods
to evaluate the Casimir-Polder potential in the presence of the plate. They
also give new insights on the role of boundary conditions in the Casimir-Polder
interatomic potential, as well as indications for possible generalizations to
more complicated boundary conditions.Comment: 10 page
- …