329 research outputs found

    Immunologists getting nervous: neuropeptides, dendritic cells and T cell activation

    Get PDF
    It is increasingly recognised that the immune and nervous systems are closely integrated to optimise defence systems within the lung. In this commentary, the contribution of various neuropeptides such as substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and somatostatin to the regulation of T cell activation is discussed. These neuropeptides are released not only from nerve endings but also from inflammatory immune cells such as monocytes, dendritic cells, eosinophils and mast cells. On release they can exert both direct stimulatory and inhibitory effects on T cell activation and also indirect effects through their influence on the recruitment and activation of professional antigen-presenting dendritic cells. Neuropeptides should therefore be included in the conceptual framework of the immune regulation of T cell function by dendritic cells

    Eicosanoid Control Over Antigen Presenting Cells in Asthma

    Get PDF
    Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease

    Innate Immune Cells to the Help

    Get PDF
    A study by Halim and Steer (2014) in this issue of Immunity shows that innate lymphoid cells type 2 (ILC2s) are crucial for inducing adaptive T helper 2 immunity by providing interleukin-13. Another study by van Dyken et al. (2014) shows that ILC2s control eosinophilia and alternative activation of macrophages

    Cellular networks controlling Th2 polarization in allergy and immunity

    Get PDF
    In contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in which mucosal epithelial cells instruct dendritic cells to promote Th2 responses in the absence of IL-12 (interleukin 12) production and provide instruction through thymic stromal lymphopoieitin (TSLP) or granulocyte-macrophage colony stimulating factor (GM-CSF). At the same time, allergens, helminths and chemical adjuvants elicit the response of innate immune cells like basophils, which provide more polarizing cytokines and IL-4 and reinforce Th2 immunity. This unique communication between cells will only be fully appreciated if we study Th2 immunity in vivo and in a tissue-specific context, and can only be fully understood if we compare several models of Th2 immune response induction

    Specific Migratory Dendritic Cells Rapidly Transport Antigen from the Airways to the Thoracic Lymph Nodes

    Get PDF
    Antigen transport from the airway mucosa to the thoracic lymph nodes (TLNs) was studied in vivo by intratracheal instillation of fluorescein isothiocyanate (FITC)-conjugated macromolecules. After instillation, FITC+ cells with stellate morphology were found deep in the TLN T cell area. Using flow cytometry, an FITC signal was exclusively detected in CD11cmed-hi/major histocompatibility complex class II (MHCII)hi cells, representing migratory airway-derived lymph node dendritic cells (AW-LNDCs). No FITC signal accumulated in lymphocytes and in a CD11chiMHCIImed DC group containing a CD8αhi subset (non–airway-derived [NAW]-LNDCs). Sorted AW-LNDCs showed long MHCIIbright cytoplasmic processes and intracytoplasmatic FITC+ granules. The fraction of FITC+ AW-LNDCs peaked after 24 h and had reached baseline by day 7. AW-LNDCs were depleted by 7 d of ganciclovir treatment in thymidine kinase transgenic mice, resulting in a strong reduction of FITC-macromolecule transport into the TLNs. Compared with intrapulmonary DCs, AW-LNDCs had a mature phenotype and upregulated levels of MHCII, B7-2, CD40, and intracellular adhesion molecule (ICAM)-1. In addition, sorted AW-LNDCs from FITC-ovalbumin (OVA)–instilled animals strongly presented OVA to OVA-TCR transgenic T cells. These results validate the unique sentinel role of airway DCs, picking up antigen in the airways and delivering it in an immunogenic form to the T cells in the TLNs

    Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells

    Get PDF
    Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D2 binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3+ CD4+ regulatory T cells that suppressed inflammation in an interleukin 10–dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP–dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma

    The Balance between Plasmacytoid DC versus Conventional DC Determines Pulmonary Immunity to Virus Infections

    Get PDF
    Background: Respiratory syncytial virus (RSV) infects nearly all infants by age 2 and is a leading cause of broncialitis. RSV may employ several mechanisms to induce immune dysregulation, including dentritic cell (DC) modulation during the immune response to RSV. Methods and Findings: Expansion of cDC and pDC by Flt3L treatment promoted an anti-viral response with reduced pathophysiology characterized by decreased airway hyperreactivity, reduced Th2 cytokines, increased Th1 cytokines, and a reduction in airway inflammation and mucus overexpression. These protective aspects of DC expansion could be completely reversed by depleting pDCs during the RSV infections. Expansion of DCs by Flt3L treatment enhanced in CD8+ T cell responses, which was reversed by depletion of pDC. Conclusions: These results indicate that a balance between cDC and pDC in the lung and its lymph nodes is crucial for the outcome of a pulmonary infection. Increased pDC numbers induced by Flt3L treatment have a protective impact on the nature of the overall immune environment

    Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells

    Get PDF
    Asthma is characterized by infiltration of the airway wall with eosinophils. Although eosinophils are considered to be effector cells, recent studies have reported their ability to activate primed Th2 cells. In this study, we investigated whether eosinophils are capable of presenting Ag to unprimed T cells in draining lymph nodes (DLN) of the lung and compared this capacity with professional dendritic cells (DC). During development of eosinophilic airway inflammation in OVA-sensitized and challenged mice, CCR3(+) eosinophils accumulated in the DLN. To study their function, eosinophils were isolated from the bronchoalveolar lavage fluid of mice by sorting on CCR3(+)B220(-)CD3(-)CD11c(dim) low autofluorescent cells, avoiding contamination with other APCs, and were intratracheally injected into mice that previously received CFSE-labeled OVA TCR-transgenic T cells. Eosinophils did not induce divisions of T cells in the DLN, whereas DC induced on average 3.7 divisions in 45.7% of T cells. To circumvent the need for Ag processing or migration in vivo, eosinophils were pulsed with OVA peptide and were still not able to induce T cell priming in vitro, whereas DC induced vigorous proliferation. This lack of Ag-presenting ability was explained by the very weak expression of MHC class II on fresh eosinophils, despite expression of the costimulatory molecules CD80 and ICAM-1. This investigation does not support any role for airway eosinophils as APCs to naive T cells, despite their migration to the DLN at times of allergen exposure. DC are clearly superior in activating T cells in the DLN of the lung

    In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma

    Get PDF
    Although dendritic cells (DCs) play an important role in sensitization to inhaled allergens, their function in ongoing T helper (Th)2 cell–mediated eosinophilic airway inflammation underlying bronchial asthma is currently unknown. Here, we show in an ovalbumin (OVA)-driven murine asthma model that airway DCs acquire a mature phenotype and interact with CD4+ T cells within sites of peribronchial and perivascular inflammation. To study whether DCs contributed to inflammation, we depleted DCs from the airways of CD11c-diphtheria toxin (DT) receptor transgenic mice during the OVA aerosol challenge. Airway administration of DT depleted CD11c+ DCs and alveolar macrophages and abolished the characteristic features of asthma, including eosinophilic inflammation, goblet cell hyperplasia, and bronchial hyperreactivity. In the absence of CD11c+ cells, endogenous or adoptively transferred CD4+ Th2 cells did not produce interleukin (IL)-4, IL-5, and IL-13 in response to OVA aerosol. In CD11c-depleted mice, eosinophilic inflammation and Th2 cytokine secretion were restored by adoptive transfer of CD11c+ DCs, but not alveolar macrophages. These findings identify lung DCs as key proinflammatory cells that are necessary and sufficient for Th2 cell stimulation during ongoing airway inflammation

    Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic Reactions to Harmless Inhaled Antigen

    Get PDF
    Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma
    • …
    corecore