56 research outputs found

    Determination of monomethylmercury from seawater with ascorbic acid-assisted direct ethylation

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2014. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 12 (2014): 1-9, doi:10.4319/lom.2014.12.1.We developed a technique to measure monomethylmercury (MMHg) concentrations from small volumes (180 mL) of seawater at low femtomolar concentrations using direct ethylation derivitization, decreasing the required volume by 90% from current methods while maintaining a 5 fM detection limit. In this method, addition of ascorbic acid before derivitization of MMHg allows for full recovery of MMHg from the seawater matrix without the need for sample distillation or extraction. The small sample size and relative ease of detection are ideal both for shipboard as well as shore-based measurements of preserved MMHg samples. Combined with shipboard determination of dimethylmercury (DMHg) and elemental mercury (Hg(0)), this method can be used to determine full marine mercury speciation.This research was supported by a National Science Foundation grant (OCE-1031271) awarded to C. H. L. and Mak Saito and a Graduate Research Fellowship awarded to K. M. M

    The spatial and temporal variability of Mn speciation in the coastal Northwest Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(1),(2020): e2019JC015167, doi:10.1029/2019JC015167.Manganese (Mn) is distributed widely throughout the global ocean, where it cycles between three oxidation states that each play important biogeochemical roles. The speciation of Mn in seawater was previously operationally defined on filtration, with soluble Mn presumed to be Mn(II) and solid‐phase Mn as Mn(III/IV) oxides. Recent findings of abundant soluble Mn(III) complexes (Mn(III)‐L) highlights the need to reexamine the redox cycling of Mn, as these complexes can donate or accept electrons. To better understand the complex cycling of Mn in coastal waters, the distribution of Mn species at four Northwest Atlantic sites with different characteristics was examined. Diurnal influences on Mn speciation were investigated within a productive site. At all sites, Mn(III)‐L complexes dominated, particularly in surface waters, and Mn oxides were low in abundance in surface waters but high in bottom waters. Despite intrasite similarities, Mn speciation was highly variable between our stations, emphasizing the diverse processes that impact Mn redox. Diel Mn measurements revealed that the cycling of Mn is also highly variable over time, even on time scales as short as hours. We observed a change of over 100 nM total Mn over 17 hrs and find that speciation changed drastically. These changes could include contributions from biological, light‐mediated, and/or abiotic mechanisms but more likely point to the importance of lateral mixing at coastal sites. This exploration demonstrates the spatial and temporal variability of the Mn redox cycle and indicates that single timepoint vertical profiling is not sufficient when describing the geochemistry of dynamic coastal systems.This work was funded by grants from the Chemical Oceanography program of the National Science Foundation (OCE‐1355720 to CMH and CHL). VĂ©ronique Oldham thanks Woods Hole Oceanographic Institution for the receipt of the WHOI Postdoctoral Scholarship. Thanks also to Kevin Sutherland, Jen Karolweski, Gabriella Farfan, Kalina Grabb, Kaitlin Bowman, Alison Agather, and Lindsey Starr for the shipboard sampling assistance, as well as the captain and crew of the R/V Endeavor who made the sampling for this research possible. All data presented in the manuscript are available through the Biological and Chemical Oceanography Data Management Office (BCO‐DMO) under Project 756930 at the following link (https://www.bco‐dmo.org/project/756930).2020-06-2

    Seasonal changes in gaseous elemental mercury in relation to monsoon cycling over the northern South China Sea

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 12 (2012): 7341-7350, doi:10.5194/acp-12-7341-2012.The distribution of gaseous elemental mercury (GEM) was determined in the surface atmosphere of the northern South China Sea (SCS) during 12 SEATS cruises between May 2003 and December 2005. The sampling and analysis of GEM were performed on board ship by using an on-line mercury analyzer (GEMA). Distinct annual patterns were observed for the GEM with a winter maximum of 5.7 ± 0.2 ng m−3 (n = 3) and minimum in summer (2.8 ± 0.2; n = 3), with concentrations elevated 2–3 times global background values. Source tracking through backward air trajectory analysis demonstrated that during the northeast monsoon (winter), air masses came from Eurasia, bringing continental- and industrial-derived GEM to the SCS. In contrast, during summer southwest monsoon and inter-monsoon, air masses were from the Indochina Peninsula and Indian Ocean and west Pacific Ocean. This demonstrates the impact that long-range transport, as controlled by seasonal monsoons, has on the Hg atmospheric distribution and cycling in the SCS.Support was provided by the National Science Council (Taiwan, Republic of China) through grant number NSC 97-2745-M-002-001-;98- 2611-M-002-013- and through a thematic research grant titled “Atmospheric Forcing on Ocean Biogeochemistry (AFOBi)” and from the College of Science (COS#1010023540), National Taiwan University (NTU#101R3252) through a grant of the NTU “Aim for Top University Project” under research platform of the “Drunken-Moon Lake” scientific integration

    A unique seasonal pattern in dissolved elemental mercury in the South China Sea, a tropical and monsoon-dominated marginal sea

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 167–172, doi:10.1029/2012GL054457.A unique seasonal pattern in dissolved elemental mercury (DEM) was observed in the tropical monsoon-dominated South China Sea (SCS). The DEM concentration varied seasonally, with a high in summer of 160 ± 40 fM (net evasion 580 ± 120 pmol m−2 d−1, n = 4) and a low in winter of 60 ± 30 fM (net invasion −180 ± 110, n = 4) and showed a positive correlation with sea surface temperature (SST). The elevated DEM concentration in summer appears mainly abiologically driven. In winter, the SCS acts as a sink of atmosphere Hg0 as a result of low SST and high wind of the year, enhanced vertical mixing, and elevated atmospheric gaseous elemental mercury. Annually, the SCS serves as a source of Hg0 to the atmosphere of 300 ± 50 pmol m−2 d−1 (385 ± 64 kmol Hg yr−1, ~2.6% of global emission in ~1% of global ocean area), suggesting high regional Hg pollution impacts from the surrounding Mainland (mostly China).Support was provided by the National Science Council through grants NSC 97-2745-M-002- 001-;98(99,100)-2611-M-002-013(014,004) and from the College of Science, National Taiwan University under the “Drunken Moon Lake Scientific Integrated Scientific Research Platform” grant, NTU 101R3252, as well as through the U.S. National Science Foundation under grant OCE-1132515 and 0928191.2013-07-1

    Net atmospheric mercury deposition to Svalbard : estimates from lacustrine sediments

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Atmospheric Environment 59 (2012): 509-513, doi:10.1016/j.atmosenv.2012.05.048.In this study we used lake sediments, which faithfully record Hg inputs, to derive estimates of net atmospheric Hg deposition to Svalbard, Norwegian Arctic. With the exception of one site affected by local pollution, the study lakes show twofold to fivefold increases in sedimentary Hg accumulation since 1850, likely due to long-range atmospheric transport and deposition of anthropogenic Hg. Sedimentary Hg accumulation in these lakes is a linear function of the ratio of catchment area to lake area, and we used this relationship to model net atmospheric Hg flux: preindustrial and modern estimates are 2.5±3.3 ÎŒg/m2/y and 7.0±3.0 ÎŒg/m2/y, respectively. The modern estimate, by comparison with data for Hg wet deposition, indicates that atmospheric mercury depletion events (AMDEs) or other dry deposition processes contribute approximately half (range 0-70%) of the net flux. Hg from AMDEs may be moving in significant quantities into aquatic ecosystems, where it is a concern because of contamination of aquatic food webs.Funding was provided by an NSERC Discovery Grant (Drevnick) and the Norges forskningsrĂ„d (grant number 107745/730)

    Dynamic mercury methylation and demethylation in oligotrophic marine water

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 6451-6460, doi:10.5194/bg-15-6451-2018.Mercury bioaccumulation in open-ocean food webs depends on the net rate of inorganic mercury conversion to monomethylmercury in the water column. We measured significant methylation rates across large gradients in oxygen utilization in the oligotrophic central Pacific Ocean. Overall, methylation rates over 24h incubation periods were comparable to those previously published from Arctic and Mediterranean waters despite differences in productivity between these marine environments. In contrast to previous studies that have attributed Hg methylation to heterotrophic bacteria, we measured higher methylation rates in filtered water compared to unfiltered water. Furthermore, we observed enhanced demethylation of newly produced methylated mercury in incubations of unfiltered water relative to filtered water. The addition of station-specific bulk filtered particulate matter, a source of inorganic mercury substrate and other possibly influential compounds, did not stimulate sustained methylation, although transient enhancement of methylation occurred within 8h of addition. The addition of dissolved inorganic cobalt also produced dramatic, if transient, increases in mercury methylation. Our results suggest important roles for noncellular or extracellular methylation mechanisms and demethylation in determining methylated mercury concentrations in marine oligotrophic waters. Methylation and demethylation occur dynamically in the open-ocean water column, even in regions with low accumulation of methylated mercury.This work was funded by the National Science Foundation in a Chemical Oceanography Program Grant (OCE-1031271) awarded to Carl H. Lamborg and Mak A. Saito and a graduate student fellowship to Kathleen M. Munson

    Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 656–676, doi:10.1002/2015GB005120.The formation of the toxic and bioaccumulating monomethylmercury (MMHg) in marine systems is poorly understood, due in part to sparse data from many ocean regions. We present dissolved mercury (Hg) speciation data from 10 stations in the North and South Equatorial Pacific spanning large water mass differences and gradients in oxygen utilization. We also compare the mercury content in suspended particles from six stations and sinking particles from three stations to constrain local Hg sources and sinks. Concentrations of total Hg (THg) and methylated Hg in the surface and intermediate waters of the Equatorial and South Pacific suggest Hg cycling distinct from that of the North Pacific gyre. Maximum concentrations of 180 fM for both MMHg and dimethylmercury (DMHg) are observed in the Equatorial Pacific. South of the equator, concentrations of MMHg and DMHg are less than 100 fM. Sinking fluxes of particulate THg can reasonably explain the shape of dissolved THg profiles, but those of MMHg are too low to account for dissolved MMHg profiles. However, methylated Hg species are lower than predicted from remineralization rates based on North Pacific data, consistent with limitation of methylation in Equatorial and South Pacific waters. Full water column depth profiles were also measured for the first time in these regions. Concentrations of THg are elevated in deep waters of the North Pacific, compared to those in the intermediate and surface waters, and taper off in the South Pacific. Comparisons with previous measurements from nearby regions suggest little enrichment of THg or MMHg over the past 20 years.Financial support for this study was provided by the National Science Foundation in a grant from the Chemical Oceanography Program (OCE-1031271) to C.H. Lamborg and M.A. Saito and a Graduate Student Fellowship to K.M. Munson.2015-11-2

    An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 90-100, doi:10.4319/lom.2012.10.90.We conducted a laboratory intercomparison of total mercury (Hg) determination in seawater collected during U.S. GEOTRACES Intercalibration cruises in 2008 and 2009 to the NW Atlantic and NE Pacific Oceans. Results indicated substantial disagreement between the participating laboratories, which appeared to be affected most strongly by bottle cleanliness and preservation procedures. In addition, we examined the effectiveness of various collection and sample preparation procedures that may be used on future GEOTRACES cruises. The type of sampling system and filtration medium appeared to make little difference to results. Finally, and in light of results from experiments that considered sample bottle material effect and the development of new methods for CH3Hg+ extraction from seawater, we propose a recommended procedure for determining all four of the major Hg species in seawater (elemental, dimethyl-, monomethyl-, and total Hg).This work was supported by the National Science Foundation program in Chemical Oceanography under grants OCE–0825157, –0825108, –0825583 and –0825068
    • 

    corecore