144 research outputs found

    Determining risk of sudden death: is it all in the T wave?

    Get PDF

    Management of arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disease characterised by fibrofatty replacement of the ventricular myocardium due to specific mutations, leading to ventricular arrhythmias and sudden cardiac death. Treating this condition can be challenging due to progressive fibrosis, phenotypic variations and small patient cohorts limiting the feasibility of conducting meaningful clinical trials. Although widely used, the evidence base for anti-arrhythmic drugs is limited. Beta-blockers are theoretically sound, yet their efficacy in reducing arrhythmic risk is not robust. Additionally, the impact of sotalol and amiodarone is inconsistent with studies reporting contradictory results. Emerging evidence suggests that combining flecainide and bisoprolol may be efficacious.Radiofrequency ablation has shown some potential in disrupting ventricular tachycardia circuits, with combined endo and epicardial ablation yielding better results which could be considered at the index procedure. In addition, stereotactic radiotherapy may be a future option that can decrease arrhythmias beyond simple scar formation by altering levels of Nav1.5 channels, Connexin 43 and Wnt signalling, potentially modifying myocardial fibrosis.Future therapies, such as adenoviruses and GSk3b modulation, are still in early-stage research. While implantable cardioverter-defibrillator implantation is a key intervention for reducing arrhythmic death, the risks of inappropriate shocks and device complications must be carefully considered

    Right ventricular function is a predictor for sustained ventricular tachycardia requiring anti-tachycardic pacing in arrhythmogenic ventricular cardiomyopathy: insight into transvenous vs. subcutaneous implantable cardioverter defibrillator insertion

    Get PDF
    AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) patients develop ventricular arrhythmias (VAs) responsive to anti-tachycardia pacing (ATP). However, VA episodes have not been characterized in accordance with the device therapy, and with the emergence of the subcutaneous implantable cardioverter defibrillator (S-ICD), the appropriate device prescription in ARVC remains unclear. Study aim was to characterize VA events in ARVC patients during follow-up in accordance with device therapy and elicit if certain parameters are predictive of specific VA events. METHODS AND RESULTS: This was a retrospective single-centre study utilizing prospectively collated registry data of ARVC patients with ICDs. Forty-six patients were included [54.0 ± 12.1 years old and 20 (43.5%) secondary prevention devices]. During a follow-up of 12.1 ± 6.9 years, 31 (67.4%) patients had VA events [n = 2, 6.5% ventricular fibrillation (VF), n = 14], 45.2% VT falling in VF zone resulting in ICD shock(s), n = 10, 32.3% VT resulting in ATP, and n = 5, 16.1% patients had both VT resulting in ATP and ICD shock(s). Lead failure rates were high (11/46, 23.9%). ATP was successful in 34.5% of patients. Severely impaired right ventricular (RV) function was an independent predictor of VT resulting in ATP (hazard ratio 16.80, 95% confidence interval 3.74–75.2; P < 0.001) with a high predictive accuracy (area under the curve 0.88, 95%CI 0.76–1.00; P < 0.001). CONCLUSION: VA event rates are high in ARVC patients with a majority having VT falling in the VF zone resulting in ICD shock(s). S-ICDs could be of benefit in most patients with ARVC with the absence of severely impaired RV function which has the potential to avoid consequences of the high burden of lead failure

    第780回千葉医学会例会・第5回神経内科例会・第263回脳研談話会 17.

    Get PDF
    BACKGROUND:The restitution of the action potential duration (APDR) and conduction velocity (CVR) are mechanisms whereby cardiac excitation and repolarization adapt to changes in heart rate. They modulate the vulnerability to dangerous arrhythmia, but the mechanistic link between restitution and arrhythmogenesis remains only partially understood. METHODS:This paper provides an experimental and theoretical study of repolarization and excitation restitution properties and their interactions in the intact human epicardium. The interdependence between excitation and repolarization dynamic is studied in 8 patients (14 restitution protocols, 1722 restitution curves) undergoing global epicardial mapping with multi-electrode socks before open heart surgery. A mathematical description of the contribution of both repolarization and conduction dynamics to the steepness of the APDR slope is proposed. RESULTS:This study demonstrates that the APDR slope is a function of both activation and repolarization dynamics. At short cycle length, conduction delay significantly increases the APDR slope by interacting with the diastolic interval. As predicted by the proposed mathematical formulation, the APDR slope was more sensitive to activation time prolongation than to the simultaneous shortening of repolarization time. A steep APDR slope was frequently identified, with 61% of all cardiac sites exhibiting an APDR slope > 1, suggesting that a slope > 1 may not necessarily promote electrical instability in the human epicardium. APDR slope did not change for different activation or repolarization times, and it was not a function of local baseline APD. However, it was affected by the spatial organization of electrical excitation, suggesting that in tissue APDR is not a unique function of local electrophysiological properties. Spatial heterogeneity in both activation and repolarization restitution contributed to the increase in the modulated dispersion of repolarization, which for short cycle length was as high as 250 ms. Heterogeneity in conduction velocity restitution can translate into both activation and repolarization dispersion and increase cardiac instability. The proposed mathematical formulation shows an excellent agreement with the experimental data (correlation coefficient r = 0.94) and provides a useful tool for the understanding of the complex interactions between activation and repolarization restitution properties as well as between their measurements

    Prognostic Significance of Different Ventricular Ectopic Burdens During Submaximal Exercise in Asymptomatic UK Biobank Subjects

    Get PDF
    BACKGROUND: The consequences of exercise-induced premature ventricular contractions (PVCs) in asymptomatic individuals remain unclear. This study aimed to assess the association between PVC burdens during submaximal exercise and major adverse cardiovascular events (MI/HF/LTVA: myocardial infarction [MI], heart failure [HF], and life-threatening ventricular arrhythmia [LTVA]), and all-cause mortality. Additional end points were MI, LTVA, HF, and cardiovascular mortality. METHODS: A neural network was developed to count PVCs from ECGs recorded during exercise (6 minutes) and recovery (1 minute) in 48 315 asymptomatic participants from UK Biobank. Associations were estimated using multivariable Cox proportional hazard models. Explorative studies were conducted in subgroups with cardiovascular magnetic resonance imaging data (n=6290) and NT-proBNP (N-terminal Pro-B-type natriuretic peptide) levels (n=4607) to examine whether PVC burden was associated with subclinical cardiomyopathy. RESULTS: Mean age was 56.8±8.2 years; 51.1% of the participants were female; and median follow-up was 12.6 years. Low PVC counts during exercise and recovery were both associated with MI/HF/LTVA risk, independently of clinical factors: adjusted hazard ratio (HR), 1.2 (1-5 exercise PVCs, P20 exercise PVCs, P5 recovery PVCs, P20 exercise PVCs, P5 recovery PVCs, P<0.001). Complex PVC rhythms were associated with higher risk compared with PVC count alone. PVCs were also associated with incident HF, LTVA, and cardiovascular mortality, but not MI. In the explorative studies, high PVC burden was associated with larger left ventricular volumes, lower ejection fraction, and higher levels of NT-proBNP compared with participants without PVCs. CONCLUSION: In this cohort of middle-aged and older adults, PVC count during submaximal exercise and recovery were both associated with MI/HF/LTVA, all-cause mortality, HF, LTVAs, and cardiovascular mortality, independent of clinical and exercise test factors, indicating an incremental increase in risk as PVC count rises. Complex PVC rhythms were associated with higher risk compared with PVC count alone. Underlying mechanisms may include the presence of subclinical cardiomyopathy
    corecore