15,255 research outputs found
Contractile properties of fibroblasts derived from primary frozen shoulder and effects of TGF beta 1 stimulation
INTRODUCTION: Primary Frozen Shoulder (PFS) is a debilitating disease of unknown aetiology. There is fibrosis and contracture of the coracohumeral ligament, tissues of the rotator interval and the glenohumeral ligaments, leading to restrictive shoulder movements requiring surgical intervention [1]. Frozen shoulder has been postulated to be dupuytren’s disease of the shoulder with an association inferred since 1936. The purpose of the study was to test the hypothesis that cellular mechanisms of fibroblasts derived from primary frozen shoulder exhibited similar activity in terms of contraction and response to cytokine (transforming growth factor beta1) to fibroblasts derived from dupuytren’s disease. Understanding of cellular responses is critical to developing non surgical treatment strategies
Towards the Formal Specification and Verification of Maple Programs
In this paper, we present our ongoing work and initial results on the formal
specification and verification of MiniMaple (a substantial subset of Maple with
slight extensions) programs. The main goal of our work is to find behavioral
errors in such programs w.r.t. their specifications by static analysis. This
task is more complex for widely used computer algebra languages like Maple as
these are fundamentally different from classical languages: they support
non-standard types of objects such as symbols, unevaluated expressions and
polynomials and require abstract computer algebraic concepts and objects such
as rings and orderings etc. As a starting point we have defined and formalized
a syntax, semantics, type system and specification language for MiniMaple
Giant thermopower and figure of merit in single-molecule devices
We present a study of the thermopower and the dimensionless figure of
merit in molecules sandwiched between gold electrodes. We show that for
molecules with side groups, the shape of the transmission coefficient can be
dramatically modified by Fano resonances near the Fermi energy, which can be
tuned to produce huge increases in and . This shows that molecules
exhibiting Fano resonances have a high efficiency of thermoelectric cooling
which is not present for conventional un-gated molecules with only delocalized
states along their backbone.Comment: 4 pages, 4 figure
Modelling persistence in annual Australia point rainfall
Annual rainfall time series for Sydney from 1859 to 1999 is analysed. Clear evidence of nonstationarity is presented, but substantial evidence for persistence or hidden states is more elusive. A test of the hypothesis that a hidden state Markov model reduces to a mixture distribution is presented. There is strong evidence of a correlation between the annual rainfall and climate indices. Strong evidence of persistence of one of these indices, the Pacific Decadal Oscillation (PDO), is presented together with a demonstration that this is better modelled by fractional differencing than by a hidden state Markov model. It is shown that conditioning the logarithm of rainfall on PDO, the Southern Oscillation index (SOI), and their interaction provides realistic simulation of rainfall that matches observed statistics. Similar simulation models are presented for Brisbane, Melbourne and Perth.</p> <p style='line-height: 20px;'><b>Keywords: </b>Hydrological persistence,hidden state Markov models, fractional differencing, PDO, SOI, Australian rainfall</p
Nucleosynthesis and mixing on the Asymptotic Giant Branch. III. Predicted and observed s-process abundances
We present the results of s-process nucleosynthesis calculations for AGB
stars of different metallicities and initial masses. The computations were
based on previously published stellar evolutionary models that account for the
III dredge up phenomenon occurring late on the AGB. Neutron production is
driven by the 13C(alpha,n)16O reaction during the interpulse periods in a tiny
layer in radiative equilibrium at the top of the He- and C-rich shell. The
s-enriched material is subsequently mixed with the envelope by the III dredge
up, and the envelope composition is computed after each thermal pulse. We
follow the changes in the photospheric abundance of the Ba-peak elements (heavy
s, or `hs') and that of the Zr-peak ones (light s, or `ls'), whose logarithmic
ratio [hs/ls] has often been adopted as an indicator of the s-process
efficiency. The theoretical predictions are compared with published abundances
of s elements for Galactic AGB giants of classes MS, S, SC, post-AGB
supergiants, and for various classes of binary stars. The observations in
general confirm the complex dependence of n captures on metallicity. They
suggest that a moderate spread exists in the abundance of 13C that is burnt in
different stars. Although additional observations are needed, a good
understanding has been achieved of s-process operation in AGB. The detailed
abundance distribution including the light elements (CNO) of a few s-enriched
stars at different metallicity are examined.Comment: Accepted for ApJ, 59 pages, 19 figures, 5 table
Barkhausen Noise in a Relaxor Ferroelectric
Barkhausen noise, including both periodic and aperiodic components, is found
in and near the relaxor regime of a familiar relaxor ferroelectric,
PbMgNbO, driven by a periodic electric field. The
temperature dependences of both the amplitude and spectral form show that the
size of the coherent dipole moment changes shrink as the relaxor regime is
entered, contrary to expectations based on some simple models.Comment: 4 pages RevTeX4, 5 figures; submitted to Phys Rev Let
Sub-gap conductance in ferromagnetic-superconducting mesoscopic structures
We study the sub-gap conductance of a ferromagnetic mesoscopic region
attached to a ferromagnetic and a superconducting electrode by means of tunnel
junctions. In the absence of the exchange field, the ratio of the two tunnel junction resistances determines the behaviour of
the sub-gap conductance which possesses a zero-bias peak for and for
a peak at finite voltage. We show that the inclusion of the exchange
field leads to a peak splitting for , while it shifts the zero-bias
anomaly to finite voltages for .Comment: 5 pages revte
The Interstellar Rubidium Isotope Ratio toward Rho Ophiuchi A
The isotope ratio, 85Rb/87Rb, places constraints on models of the
nucleosynthesis of heavy elements, but there is no precise determination of the
ratio for material beyond the Solar System. We report the first measurement of
the interstellar Rb isotope ratio. Our measurement of the Rb I line at 7800 A
for the diffuse gas toward rho Oph A yields a value of 1.21 +/- 0.30 (1-sigma)
that differs significantly from the meteoritic value of 2.59. The Rb/K
elemental abundance ratio for the cloud also is lower than that seen in
meteorites. Comparison of the 85Rb/K and 87Rb/K ratios with meteoritic values
indicates that the interstellar 85Rb abundance in this direction is lower than
the Solar System abundance. We attribute the lower abundance to a reduced
contribution from the r-process. Interstellar abundances for Kr, Cd, and Sn are
consistent with much less r-process synthesis for the solar neighborhood
compared to the amount inferred for the Solar System.Comment: 12 pages with 2 figures and 1 table; will appear in ApJ Letter
- …
