9,501 research outputs found

    Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps

    Get PDF
    Ultracold hybrid ion-atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the Yb+^{+} ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion-atom collisions dominates cold ion-atom collisions. For spin dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole interaction and the second-order spin-orbit coupling can play important roles, inducing couplingbetween the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately 5 orders of magnitude higher than the charge-exchange collision rate \cite{kohl13}. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol. Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114

    X-ray Pulsars in the Small Magellanic Cloud

    Full text link
    XMM-Newton archival data for the Small Magellanic Cloud have been examined for the presence of previously undetected X-ray pulsars. One such pulsar, with a period of 202 s, is detected. Its position is consistent with an early B star in the SMC and we identify it as a high mass X-ray binary (HMXB). In the course of this study we determined the pulse period of the possible AXP CXOU J010043.1-721134 to be 8.0 s, correcting an earlier report (Lamb et al 2002b) of a 5.4 s period for this object. Pulse profiles and spectra for each of these objects are presented as well as for a recently discovered (Haberl & Pietsch 2004) 263 s X-ray pulsar. Properties of an ensemble of 24 optically identified HMXB pulsars from the SMC are investigated. The locations of the pulsars and an additional 22 X-ray pulsars not yet identified as having high mass companions are located predominately in the young (ages ≤3×107\le 3 \times 10^{7} years) star forming regions of the SMC as expected on the basis of binary evolution models. We find no significant difference between the distribution of spin periods for the HMXB pulsars of the SMC compared with that of the Milky Way. For those HMXB pulsars which have Be companions we note an inverse correlation between spin period and maximum X-ray flux density. (This anti-correlation has been previously noted for all X-ray binary pulsars by Stella, White & Rosner 1986). The anti-correlation for the Be binaries may be a reflection of the fact that the spin periods and orbital periods of Be HMXBs are correlated. We note a similar correlation between X-ray luminosity and spin period for the Be HMXB pulsars of the Milky Way and speculate that exploitation of the correlation could serve as a distance indicator.Comment: final version accepted in The Astrophysical Journa

    Discovery of Pulsed X-ray Emission from the SMC Transient RX J0117.6-7330

    Get PDF
    We report on the detection of pulsed, broad-band, X-ray emission from the transient source RX J0117.6-7330. The pulse period of 22 seconds is detected by the ROSAT/PSPC instrument in a 1992 Sep 30 - Oct 2 observation and by the CGRO/BATSE instrument during the same epoch. Hard X-ray pulsations are detectable by BATSE for approximately 100 days surrounding the ROSAT observation (1992 Aug 28 - Dec 8). The total directly measured X-ray luminosity during the ROSAT observation is 1.0E38 (d/60 kpc)^2 ergs s-1. The pulse frequency increases rapidly during the outburst, with a peak spin-up rate of 1.2E-10 Hz s-1 and a total frequency change 1.8%. The pulsed percentage is 11.3% from 0.1-2.5 keV, increasing to at least 78% in the 20-70 keV band. These results establish RX J0117.6-7330 as a transient Be binary system.Comment: 17 pages, Latex, aasms, accepted for publication in ApJ Letter
    • …
    corecore