24 research outputs found

    Multi-strap in-port ICRF antenna modeling and development in support of ITER and EU-DEMO

    Get PDF
    Full-size 3D model of ITER ICRF antenna with 1D plasma electron density (ne) and 3D ne (from EMC3-Eirene) was simulated using the RAPLICASOL (COMSOL-based) code. Impedance matrices and coupled power agree well with TOPICA with 1D ne. Cases with 3D ne show port-to-port differences compared to 1D ne, as well as a lower (about 10%) coupled power. Efficient minimization of ITER antenna near-fields (to reduce RF sheaths by optimizing feeding) calculated by TOPICA and RAPLICASOL is possible with [0;Ï€;Ï€;0] (about balanced strap powers) and is even lower with [0;Ï€;0;Ï€] toroidal phasing (with dominant power from central straps). Lowest near-fields are with [0;Ï€] poloidal phasing, but [0;-Ï€/2] will be used in a load resilience setup with 3dB splitters. Under EUROfusion prospective research and development, in-port ICRF antenna concept for EU-DEMO with 8 quadruplets (4x toroidal by 2x poloidal) is considered to deliver 16.7 MW (3 antennas yielding 50 MW). Areas around the equatorial port and cut-ins in breeding blankets are used, with emphasis on [0;Ï€;Ï€;0] optimization. High-resolution RAPLICASOL calculations with full ne profile (without imposing a minimum ne value) shed light on field distribution with propagative slow wave in detailed antenna geometry

    Radiofrequency and mechanical tests of silver coated CuCrZr contacts for the ITER ion cyclotron antenna

    Get PDF
    The ITER Ion Cyclotron Resonance Heating (ICRH) system is designed to couple to the plasma 20 MW of RF power from two antennas in the 40–55 MHz frequency range during long pulses of up to 3600 s and under various plasma conditions with Edge Localized Modes. Radio-Frequency (RF) contacts are integrated within the ITER ICRH launcher in order to ensure the RF current continuity and ease the mechanical assembly by allowing the free thermal expansion of the Removable Vacuum Transmission Line coaxial conductors during RF operations or during 250 °C baking phases. A material study has been carried out to determine which materials and associated coatings are relevant for RF contacts application in ITER. In parallel, RF tests have been performed with a new prototype of Multi-Contact® LA-CUT/0,25/0 contacts made of silver-coated CuCrZr louvers. During these tests on a RF vacuum resonator, currents between 1.2 kA and 1.3 kA peak have been reached a few tens of times in steady-state conditions without any visible damage on the louvers. A final 62 MHz pulse ending in a 300 s flat top at 1.9 kA resulted in severe damage to the contact. In addition, a test bed which performs sliding test cycles has been built in order to reproduce the wear of the contact prototype after 30 000 sliding cycles on a 3 mm stroke at 175 °C under vacuum. The silver coating of the louvers is removed after approximately a hundred cycles whilst, to the contrary, damage to the CuCrZr louvers is relatively low

    Developement of separative methods to detect counterfeiting of biosynthetic molecules such as insuline and the GHRP

    Full text link
    peer reviewedCounterfeiting is a widespread problem in the world. The medicines, like insulin or GHRP, need a strict quality control. Capillary electrophoresis and liquid chromatography methods were developed to analyze these peptides. The human insulin and its different analogues (lispro, aspart, glulisin, glargin and detemir) were separated by MEKC within 15 minutes. The GHRP-2 and -6 were separated by HPLC also in 15 minutes. Several samples of GHRP-6 were analyzed and non-compliances were reported. These analytical approaches seem to be promising to fight against the counterfeiting of such medicines

    ICRF heating schemes for the ITER non-active phase

    No full text
    ITER plasma operation requires a non-active phase for tokamak initial commissioning, covering First Plasma and Pre-Fusion Power Operation phases, PFPO-1 and PFPO-2. Non-active operation consists of hydrogen and helium plasmas to minimize the neutron production rate. The present document describes some Ion Cyclotron Radio Frequency (ICRF) heating schemes in terms of their predicted performance for the main foreseen scenarios of the ITER non-active phase in hydrogen and helium. Emphasis is given on remaining issues and physics uncertainties to be addressed for successful ICRF heating in ITER
    corecore