17,674 research outputs found
Phase II of the ASCE Benchmark Study on SHM
The task group on structural health monitoring of the Dynamic Committee of ASCE was formed in
1999 at the 12
th
Engineering Mechanics Conference. The task group has designed a number of analytical
studies on a benchmark structure and there are plans to follow these with an experimental program. The
first phase of the analytical studies was completed in 2001. The second phase, initiated in the summer of
2001, was formulated in the light of the experience gained on phase I and focuses on increasing realism in
the simulation of the discrepancies between the actual structure and the mathematical model used in the
analysis. This paper describes the rational that lead the SHM task group to the definition of phase II and
presents the details of the cases that are being considered
Small-Recoil Approximation
In this review we discuss a technique to compute and to sum a class of
Feynman diagrams, and some of its applications. These are diagrams containing
one or more energetic particles that suffer very little recoil in their
interactions. When recoil is completely neglected, a decomposition formula can
be proven. This formula is a generalization of the well-known eikonal formula,
to non-abelian interactions. It expresses the amplitude as a sum of products of
irreducible amplitudes, with each irreducible amplitude being the amplitude to
emit one, or several mutually interacting, quasi-particles. For abelian
interaction a quasi-particle is nothing but the original boson, so this
decomposition formula reduces to the eikonal formula. In non-abelian situations
each quasi-particle can be made up of many bosons, though always with a total
quantum number identical to that of a single boson. This decomposition enables
certain amplitudes of all orders to be summed up into an exponential form, and
it allows subleading contributions of a certain kind, which is difficult to
reach in the usual way, to be computed. For bosonic emissions from a heavy
source with many constituents, a quasi-particle amplitude turns out to be an
amplitude in which all bosons are emitted from the same constituent. For
high-energy parton-parton scattering in the near-forward direction, the
quasi-particle turns out to be the Reggeon, and this formalism shows clearly
why gluons reggeize but photons do not. The ablility to compute subleading
terms in this formalism allows the BFKL-Pomeron amplitude to be extrapolated to
asymptotic energies, in a unitary way preserving the Froissart bound. We also
consider recoil corrections for abelian interactions in order to accommodate
the Landau-Pomeranchuk-Migdal effect.Comment: 21 pages with 4 figure
Generalized Background-Field Method
The graphical method discussed previously can be used to create new gauges
not reachable by the path-integral formalism. By this means a new gauge is
designed for more efficient two-loop QCD calculations. It is related to but
simpler than the ordinary background-field gauge, in that even the triple-gluon
vertices for internal lines contain only four terms, not the usual six. This
reduction simplifies the calculation inspite of the necessity to include other
vertices for compensation. Like the ordinary background-field gauge, this
generalized background-field gauge also preserves gauge invariance of the
external particles. As a check of the result and an illustration for the
reduction in labour, an explicit calculation of the two-loop QCD
-function is carried out in this new gauge. It results in a saving of
45% of computation compared to the ordinary background-field gauge.Comment: 17 pages, Latex, 18 figures in Postscrip
Weighing the Cosmological Energy Contents with Weak Gravitational Lensing
Bernardeau et al. (1997), using perturbation theory, showed that the skewness
of the large-scale lensing-convergence, or projected mass density, could be
used to constrain , the matter content of the universe. On the other
hand, deep weak-lensing field surveys in the near future will likely measure
the convergence on small angular scales (< 10 arcmin.), where the signal will
be dominated by highly nonlinear fluctuations. We develop a method to compute
the small-scale convergence skewness, using a prescription for the highly
nonlinear three-point function developed by Scoccimarro and Frieman (1998).
This method gives predictions that agree well with existing results from
ray-tracing N-body simulations, but is significantly faster, allowing the
exploration of a large number of models. We demonstrate that the small-scale
convergence skewness is insensitive to the shape and normalization of the
primordial (CDM-type) power spectrum, making it dependent almost entirely on
the cosmological energy contents, through their influence on the global
geometrical distances and fluctuation growth rate. Moreover, nonlinear
clustering appears to enhance the differences between predictions of the
convergence skewness for a range of models. Hence, in addition to constraining
, the small-scale convergence skewness from future deep several-
degree-wide surveys can be used to differentiate between curvature dominated
and cosmological constant () dominated models, as well as to constrain
the equation of state of a quintessence component, thereby distinguishing
from quintessence as well. Finally, our method can be easily
generalized to other measures such as aperture mass statistics.Comment: 13 pages, 2 ps figures, submitted to ApJ
Lake and climate models linkage: a 3-D hydrodynamic contribution
International audienceUnder a Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) project, targeted to study the feasibility to link regional climate models with lake models, one of the tasks was to consider such a coupling in large lakes. The objective is to provide detailed information on temperature and circulation distributions of the lake to take into account the spatial variability for temperature and the heat exchange through the water's surface. The major contribution of this work is focused on realistic representation of the heat fluxes and temperature distributions to and from lakes especially during the thermally stratified ice-free periods. This paper presents the detailed 3-D ELCOM model applied in Lake Erie in order to produce, at the surface layer of the lake, the spatial distribution of temperature and heat exchanges that eventually can be coupled with a regional climate model (CRCM). Preliminary results will be presented on how this lake model may improve the regional climate models, which currently do not consider such large lake circulation effects
Combinatorial Hopf algebras and Towers of Algebras
Bergeron and Li have introduced a set of axioms which guarantee that the
Grothendieck groups of a tower of algebras can be
endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap,
and independently Lam and Shimozono constructed dual graded graphs from
primitive elements in Hopf algebras. In this paper we apply the composition of
these constructions to towers of algebras. We show that if a tower
gives rise to graded dual Hopf algebras then we must
have where .Comment: 7 page
Activation Energy of Metastable Amorphous Ge2Sb2Te5 from Room Temperature to Melt
Resistivity of metastable amorphous Ge2Sb2Te5 (GST) measured at device level
show an exponential decline with temperature matching with the steady-state
thin-film resistivity measured at 858 K (melting temperature). This suggests
that the free carrier activation mechanisms form a continuum in a large
temperature scale (300 K - 858 K) and the metastable amorphous phase can be
treated as a super-cooled liquid. The effective activation energy calculated
using the resistivity versus temperature data follow a parabolic behavior, with
a room temperature value of 333 meV, peaking to ~377 meV at ~465 K and reaching
zero at ~930 K, using a reference activation energy of 111 meV (3kBT/2) at
melt. Amorphous GST is expected to behave as a p-type semiconductor at Tmelt ~
858 K and transitions from the semiconducting-liquid phase to the
metallic-liquid phase at ~ 930 K at equilibrium. The simultaneous Seebeck (S)
and resistivity versus temperature measurements of amorphous-fcc mixed-phase
GST thin-films show linear S-T trends that meet S = 0 at 0 K, consistent with
degenerate semiconductors, and the dS/dT and room temperature activation energy
show a linear correlation. The single-crystal fcc is calculated to have dS/dT =
0.153 {\mu}V/K for an activation energy of zero and a Fermi level 0.16 eV below
the valance band edge.Comment: 5 pages, 5 figure
Multiple Reggeon Exchange from Summing QCD Feynman Diagrams
Multiple reggeon exchange supplies subleading logs that may be used to
restore unitarity to the Low-Nussinov Pomeron, provided it can be proven that
the sum of Feynman diagrams to all orders gives rise to such multiple regge
exchanges. This question cannot be easily tackled in the usual way except for
very low-order diagrams, on account of delicate cancellations present in the
sum which necessitate individual Feynman diagrams to be computed to subleading
orders. Moreover, it is not clear that sums of high-order Feynman diagrams with
complicated criss-crossing of lines can lead to factorization implied by the
multi-regge scenario. Both of these difficulties can be overcome by using the
recently developed nonabelian cut diagrams. We are then able to show that the
sum of -channel-ladder diagrams to all orders does lead to such multiple
reggeon exchanges.Comment: uu-encoded latex file with 11 postscript figures (20 pages
- …