9 research outputs found

    WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ

    Get PDF
    The transcriptional co-activators YAP and TAZ are downstream targets inhibited by the Hippo tumor suppressor pathway. YAP and TAZ both possess WW domains, which are important protein–protein interaction modules that mediate interaction with proline-rich motifs, most commonly PPXY. The WW domains of YAP have complex regulatory roles as exemplified by recent reports showing that they can positively or negatively influence YAP activity in a cell and context-specific manner. In this study, we show that the WW domain of TAZ is important for it to transform both MCF10A and NIH3T3 cells and to activate transcription of ITGB2 but not CTGF, as introducing point mutations into the WW domain of TAZ (WWm) abolished its transforming and transcription-promoting ability. Using a proteomic approach, we discovered potential regulatory proteins that interact with TAZ WW domain and identified Wbp2. The interaction of Wbp2 with TAZ is dependent on the WW domain of TAZ and the PPXY-containing C-terminal region of Wbp2. Knockdown of endogenous Wbp2 suppresses, whereas overexpression of Wbp2 enhances, TAZ-driven transformation. Forced interaction of WWm with Wbp2 by direct C-terminal fusion of full-length Wbp2 or its TAZ-interacting C-terminal domain restored the transforming and transcription-promoting ability of TAZ. These results suggest that the WW domain-mediated interaction with Wbp2 promotes the transforming ability of TAZ

    Hippo Pathway Regulation of Gastrointestinal Tissues

    No full text
    The Hippo pathway plays a crucial role in regulating tissue homeostasis and organ size, and its deregulation is frequently observed in human cancer. Yap is the major effector of and is inhibited by the Hippo pathway. In mouse model studies, inducible Yap expression in multiple tissues results in organ overgrowth. In the liver, knockout of upstream Hippo pathway components or transgenic expression of Yap leads to liver enlargement and hepatocellular carcinoma. In the small intestine or colon, deletion of upstream Hippo pathway components also results in expansion of intestinal progenitor cells and eventual development of adenomas. Genetic deletion of Yap in the intestine does not change the intestinal structure, but Yap is essential for intestinal repair upon certain types of tissue injury. The function of the Hippo pathway has also been studied in other gastrointestinal tissues, including the pancreas and stomach. Here we provide a brief overview of the Hippo pathway and discuss the physiological and pathological functions of this tumor suppressor pathway in gastrointestinal tissues

    Colitis in Infancy and Childhood

    No full text

    Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine

    No full text
    corecore