16,995 research outputs found

    <i>H</i><sub>2</sub> and mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> Stabilization and Disturbance Attenuation for Differential Linear Repetitive Processes

    Get PDF
    Repetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation

    Controlling the Momentum Current of an Off-resonant Ratchet

    Full text link
    We experimentally investigate the phenomenon of a quantum ratchet created by exposing a Bose-Einstein Condensate to short pulses of a potential which is periodic in both space and time. Such a ratchet is manifested by a directed current of particles, even though there is an absence of a net bias force. We confirm a recent theoretical prediction [M. Sadgrove and S. Wimberger, New J. Phys. \textbf{11}, 083027 (2009)] that the current direction can be controlled by experimental parameters which leave the underlying symmetries of the system unchanged. We demonstrate that this behavior can be understood using a single variable containing many of the experimental parameters and thus the ratchet current is describable using a single universal scaling law.Comment: arXiv admin note: substantial text overlap with arXiv:1210.565

    Control and Filtering for Discrete Linear Repetitive Processes with H infty and ell 2--ell infty Performance

    No full text
    Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass to pass direction and cannot be controlled by standard control laws. Here we give new results on the design of physically based control laws for the sub-class of so-called discrete linear repetitive processes which arise in applications areas such as iterative learning control. The main contribution is to show how control law design can be undertaken within the framework of a general robust filtering problem with guaranteed levels of performance. In particular, we develop algorithms for the design of an H? and 2\ell_{2}–\ell_{\infty} dynamic output feedback controller and filter which guarantees that the resulting controlled (filtering error) process, respectively, is stable along the pass and has prescribed disturbance attenuation performance as measured by HH_{\infty} and 2\ell_{2}\ell_{\infty} norms

    The Role of the Pre-Sensor 1 β Hairpin in Minichromosome Maintenance 2-7 Function

    Get PDF
    The pre-sensor 1 (PS1) hairpin is found in helicases of the AAA+ family (ATPases associated with a variety of cellular activities) of proteins and is implicated in DNA translocation during DNA unwinding. To determine whether the PS1 b hairpin is required in the eukaryotic replicative helicase, Mcm2-7 (also comprised of AAA+ proteins), we mutated the conserved lysine residue in the PS1 hairpin in each of the S. cerevisiae Mcm subunits to alanine. Only the PS1 hairpin of Mcm3 was essential for viability, while mutation of the PS1 hairpin in the remaining Mcm subunits resulted in minimal phenotypes, with the exception of Mcm7. The viable alleles were synthetic lethal with each other. Mcm2-7 containing Mcm3K499A (Mcm2-73K499A) disrupts helicase activity, yet the ATPase activity of Mcm2-73K499A was similar to the wild type Mcm2-7, and its interaction with single-stranded DNA was subtly altered in vitro. These findings indicate that the PS1 hairpins in the Mcm2-7 subunits have important and distinct functions most evident with Mcm3K499A

    Appearance of the canine meninges in subtraction magnetic resonance images

    Get PDF
    The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges

    Analysis and control of bifurcation and chaos in averaged queue length in TCP/RED model

    Get PDF
    This paper studies the bifurcation and chaos phenomena in averaged queue length in a developed Transmission Control Protocol (TCP) model with Random Early Detection (RED) mechanism. Bifurcation and chaos phenomena are nonlinear behaviour in network systems that lead to degradation of the network performance. The TCP/RED model used is a model validated previously. In our study, only the average queue size k q − is considered, and the results are based on analytical model rather than actual measurements. The instabilities in the model are studied numerically using the conventional nonlinear bifurcation analysis. Extending from this bifurcation analysis, a modified RED algorithm is derived to prevent the observed bifurcation and chaos regardless of the selected parameters. Our modification is for the simple scenario of a single RED router carrying only TCP traffic. The algorithm neither compromises the throughput nor the average queuing delay of the system

    Recovery of continuous wave squeezing at low frequencies

    Full text link
    We propose and demonstrate a system that produces squeezed vacuum using a pair of optical parametric amplifiers. This scheme allows the production of phase sidebands on the squeezed vacuum which facilitate phase locking in downstream applications. We observe strong, stably locked, continuous wave vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative resonator configuration to overcome low frequency squeezing degradation caused by the optical parametric amplifiers.Comment: 9 pages, 4 figure

    K2-265 b: a transiting rocky super-Earth

    Get PDF
    We report the discovery of the super-Earth K2-265 b detected with K2 photometry. The planet orbits a bright (V_(mag) = 11.1) star of spectral type G8V with a period of 2.37 days. We obtained high-precision follow-up radial velocity measurements from HARPS, and the joint Bayesian analysis showed that K2-265 b has a radius of 1.71 ± 0.11 R⊕ and a mass of 6.54 ± 0.84 M⊕, corresponding to a bulk density of 7.1 ± 1.8 g cm^(−3). Composition analysis of the planet reveals an Earth-like, rocky interior; this object has a rock mass fraction of ~80%. The short orbital period and small radius of the planet puts it below the lower limit of the photoevaporation gap, where the envelope of the planet could have eroded owing to strong stellar irradiation, leaving behind an exposed core. Knowledge of the planet core composition allows us to infer the possible formation and evolution mechanism responsible for its current physical parameters
    corecore