17,618 research outputs found

    Hybrid biomedical intelligent systems

    Get PDF
    "Copyright © 2012 Maysam Abbod et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited."The purpose of this special issue is to promote research and developments of the best work in the field of hybrid intelligent systems for biomedical applications

    Ion collection by oblique surfaces of an object in a transversely-flowing strongly-magnetized plasma

    Get PDF
    The equations governing a collisionless obliquely-flowing plasma around an ion-absorbing object in a strong magnetic field are shown to have an exact analytic solution even for arbitrary (two-dimensional) object-shape, when temperature is uniform, and diffusive transport can be ignored. The solution has an extremely simple geometric embodiment. It shows that the ion collection flux density to a convex body's surface depends only upon the orientation of the surface, and provides the theoretical justification and calibration of oblique `Mach-probes'. The exponential form of this exact solution helps explain the approximate fit of this function to previous numerical solutions.Comment: Four pages, 2 figures. Submitted to Phys. Rev. Letter

    Finite Symmetry of Leptonic Mass Matrices

    Full text link
    We search for possible symmetries present in the leptonic mixing data from SU(3) subgroups of order up to 511. Theoretical results based on symmetry are compared with global fits of experimental data in a chi-squared analysis, yielding the following results. There is no longer a group that can produce all the mixing data without a free parameter, but a number of them can accommodate the first or the second column of the mixing matrix. The only group that fits the third column is Δ(150)\Delta(150). It predicts sin⁡22ξ13=0.11\sin^22\theta_{13}=0.11 and sin⁡22ξ23=0.94\sin^22\theta_{23}=0.94, in good agreement with experimental results.Comment: Version to appear in Physical Review

    Direct measurement of penetration length in ultra-thin and/or mesoscopic superconducting structures

    Get PDF
    We describe a method for direct measurement of the magnetic penetration length in thin (10 - 100 nm) superconducting structures having overall dimensions in the range 1 to 100 micrometers. The method is applicable for broadband magnetic fields from dc to MHz frequencies.Comment: Accepted by Journal of Applied P:hysics (Jun 2006).5 pages, 5 figure

    Stability of Filters for the Navier-Stokes Equation

    Get PDF
    Data assimilation methodologies are designed to incorporate noisy observations of a physical system into an underlying model in order to infer the properties of the state of the system. Filters refer to a class of data assimilation algorithms designed to update the estimation of the state in a on-line fashion, as data is acquired sequentially. For linear problems subject to Gaussian noise filtering can be performed exactly using the Kalman filter. For nonlinear systems it can be approximated in a systematic way by particle filters. However in high dimensions these particle filtering methods can break down. Hence, for the large nonlinear systems arising in applications such as weather forecasting, various ad hoc filters are used, mostly based on making Gaussian approximations. The purpose of this work is to study the properties of these ad hoc filters, working in the context of the 2D incompressible Navier-Stokes equation. By working in this infinite dimensional setting we provide an analysis which is useful for understanding high dimensional filtering, and is robust to mesh-refinement. We describe theoretical results showing that, in the small observational noise limit, the filters can be tuned to accurately track the signal itself (filter stability), provided the system is observed in a sufficiently large low dimensional space; roughly speaking this space should be large enough to contain the unstable modes of the linearized dynamics. Numerical results are given which illustrate the theory. In a simplified scenario we also derive, and study numerically, a stochastic PDE which determines filter stability in the limit of frequent observations, subject to large observational noise. The positive results herein concerning filter stability complement recent numerical studies which demonstrate that the ad hoc filters perform poorly in reproducing statistical variation about the true signal

    Multi-domain active sound control and noise shielding

    Get PDF
    This paper describes an active sound control methodology based on difference potentials. The main feature of this methodology is its ability to automatically preserve “wanted” sound within a domain while canceling “unwanted” noise from outside the domain. This method of preservation of the wanted sounds by active shielding control is demonstrated with various broadband and realistic sound sources such as human voice and music in multiple domains in a one-dimensional enclosure. Unlike many other conventional active control methods, the proposed approach does not require the explicit characterization of the wanted sound to be preserved. The controls are designed based on the measurements of the total field on the boundaries of the shielded domain only, which is allowed to be multiply connected. The method is tested in a variety of experimental cases. The typical attenuation of the unwanted noise is found to be about 20 dB over a large area of the shielded domain and the original wanted sound field is preserved with errors of around 1 dB and below through a broad frequency range up to 1 kHz. © 2011 Acoustical Society of Americ

    Unification of bulk and interface electroresistive switching in oxide systems

    Get PDF
    We demonstrate that the physical mechanism behind electroresistive switching in oxide Schottky systems is electroformation, as in insulating oxides. Negative resistance shown by the hysteretic current-voltage curves proves that impact ionization is at the origin of the switching. Analyses of the capacitance-voltage and conductance-voltage curves through a simple model show that an atomic rearrangement is involved in the process. Switching in these systems is a bulk effect, not strictly confined at the interface but at the charge space region.Comment: 4 pages, 3 figures, accepted in PR

    Activation Energy of Metastable Amorphous Ge2Sb2Te5 from Room Temperature to Melt

    Full text link
    Resistivity of metastable amorphous Ge2Sb2Te5 (GST) measured at device level show an exponential decline with temperature matching with the steady-state thin-film resistivity measured at 858 K (melting temperature). This suggests that the free carrier activation mechanisms form a continuum in a large temperature scale (300 K - 858 K) and the metastable amorphous phase can be treated as a super-cooled liquid. The effective activation energy calculated using the resistivity versus temperature data follow a parabolic behavior, with a room temperature value of 333 meV, peaking to ~377 meV at ~465 K and reaching zero at ~930 K, using a reference activation energy of 111 meV (3kBT/2) at melt. Amorphous GST is expected to behave as a p-type semiconductor at Tmelt ~ 858 K and transitions from the semiconducting-liquid phase to the metallic-liquid phase at ~ 930 K at equilibrium. The simultaneous Seebeck (S) and resistivity versus temperature measurements of amorphous-fcc mixed-phase GST thin-films show linear S-T trends that meet S = 0 at 0 K, consistent with degenerate semiconductors, and the dS/dT and room temperature activation energy show a linear correlation. The single-crystal fcc is calculated to have dS/dT = 0.153 {\mu}V/K for an activation energy of zero and a Fermi level 0.16 eV below the valance band edge.Comment: 5 pages, 5 figure

    THE IN VITRO AND EX VIVO EFFECT OF PHYLLANTHUS NIRURI METHANOL EXTRACT ON HEPATIC UDP-GLUCURONYLTRANSFERASE ENZYME ACTIVITY IN STZ-INDUCED DIABETIC SPRAGUE DAWLEY RATS

    Get PDF
    Objective: The aim of the study was to investigate the in vitro and ex vivo (acute and sub-chronic doses) effect of Phyllanthus niruri methanol extract (PNME) on the microsomal UDP-glucuronyltransferase (UGT) enzyme activity in streptozotocin (STZ)-induced diabetic young female Sprague Dawley (SD) rats. Methods: Young female SD rats were induced type I diabetes mellitus using STZ (60 mg/kg i. v.). The in vitro study was performed on a microsomal fraction of diabetic rat livers using PNME in doses of (0.01 ”g, 1 ”g and 10 ”g)/ml. While ex vivo studies were performed on the microsomal fraction of diabetic rats using PNME in doses of 500, 1000, 2000 and 5000 mg/kg p. o. for acute ex vivo study (one-day treatment) and 100, 500 and 2000 mg/kg/day p. o. for sub-chronic one (daily dose for two weeks). p-nitrophenol (p-NP), was used as a marker substrate for UGT enzyme activity and analyzed using the spectrophotometer to determine UGT enzyme activity. Results: The in vitro result showed that, there is no significant effect of the three concentrations of PNME versus control on UGT activity in the microsomal fraction of diabetic young female SD rat livers, while for ex vivo study, the result showed that UGT activity in the microsomal fraction of diabetic young female SD rats significantly and dose-independently increased at doses 1000, 2000 and 5000 mg/kg p. o in acute study (all p<0.05 vs control). However, no significant effect of PNME has been seen in the three doses used in the sub-chronic study. Conclusion: The three different concentrations of PNME have no significant effect as compared to control on UGT activity in the in vitro study. However, ex vivo study showed significant and dose-independent increased in UGT activity at doses 1000, 2000, and 5000 mg/kg p. o in acute study (all P<0.01 vs control), but no significant effect on sub-chronic study
    • 

    corecore