11 research outputs found

    FA用無線LANのための高速かつ安全な通信プロトコルの検討

    Get PDF
    九州工業大学博士学位論文(要旨)学位記番号:情工博甲第310号 学位授与年月日平成28年3月25

    Hardware-Based Architecture for DNN Wireless Communication Models

    No full text
    Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for wireless communication systems. However, because of the problem of a high peak-to-average power ratio (PAPR), OFDM symbols can be distorted at the MIMO OFDM transmitter. It degrades the signal detection and channel estimation performance at the MIMO OFDM receiver. In this paper, three deep neural network (DNN) models are proposed to solve the problem of non-linear distortions introduced by the power amplifier (PA) of the transmitters and replace the conventional digital signal processing (DSP) modules at the receivers in 2 × 2 MIMO OFDM and 4 × 4 MIMO OFDM systems. Proposed model type I uses the DNN model to de-map the signals at the receiver. Proposed model type II uses the DNN model to learn and filter out the channel noises at the receiver. Proposed model type III uses the DNN model to de-map and detect the signals at the receiver. All three model types attempt to solve the non-linear problem. The robust bit error rate (BER) performances of the proposed receivers are achieved through the software and hardware implementation results. In addition, we have also implemented appropriate hardware architectures for the proposed DNN models using special techniques, such as quantization and pipeline to check the feasibility in practice, which recent studies have not done. Our hardware architectures are successfully designed and implemented on the Virtex 7 vc709 FPGA board

    Hardware-Based Architecture for DNN Wireless Communication Models

    No full text
    Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for wireless communication systems. However, because of the problem of a high peak-to-average power ratio (PAPR), OFDM symbols can be distorted at the MIMO OFDM transmitter. It degrades the signal detection and channel estimation performance at the MIMO OFDM receiver. In this paper, three deep neural network (DNN) models are proposed to solve the problem of non-linear distortions introduced by the power amplifier (PA) of the transmitters and replace the conventional digital signal processing (DSP) modules at the receivers in 2 × 2 MIMO OFDM and 4 × 4 MIMO OFDM systems. Proposed model type I uses the DNN model to de-map the signals at the receiver. Proposed model type II uses the DNN model to learn and filter out the channel noises at the receiver. Proposed model type III uses the DNN model to de-map and detect the signals at the receiver. All three model types attempt to solve the non-linear problem. The robust bit error rate (BER) performances of the proposed receivers are achieved through the software and hardware implementation results. In addition, we have also implemented appropriate hardware architectures for the proposed DNN models using special techniques, such as quantization and pipeline to check the feasibility in practice, which recent studies have not done. Our hardware architectures are successfully designed and implemented on the Virtex 7 vc709 FPGA board

    Hardware Architecture for Realtime HEVC Intra Prediction

    No full text
    Researchers have, in recent times, achieved excellent compression efficiency by implementing a more complicated compression algorithm due to the rapid development of video compression. As a result, the next model of video compression, High-Efficiency Video Coding (HEVC), provides high-quality video output while requiring less bandwidth. However, implementing the intra-prediction technique in HEVC requires significant processing complexity. This research provides a completely pipelined hardware architecture solution capable of real-time compression to minimize computing complexity. All prediction unit sizes of 4×4, 8×8, 16×16, and 32×32, and all planar, angular, and DC modes are supported by the proposed solution. The synthesis results mapped to Xilinx Virtex 7 reveal that our solution can do real-time output with 210 frames per second (FPS) at 1920×1080 resolution, called Full High Definition (FHD), or 52 FPS at 3840×2160 resolution, called 4K, while operating at 232 Mhz maximum frequency

    Efficient Architectures for Full Hardware Scrypt-Based Block Hashing System

    No full text
    The password-based key derivation function Scrypt has been employed for many services and applications due to its protection ability. It has also been employed as a proof-of-work algorithm in blockchain implementations. Although this cryptographic hash function provides very high security, the processing speed and power consumption to generate a hashed block for the blockchain network are low-performance. In this paper, a high-speed and low-power hardware architecture of the Scrypt function is proposed to generate blocks for the Scrypt-based blockchain network. This architecture minimizes the number of main computational blocks to reduce the power consumption of the system. In addition, the proposed sharing resources and pipelined architectures make the calculation speed increase significantly while the hardware cost is reduced by half compared to the parallel non-pipelined architecture. The full hardware system is designed and implemented on Xilinx Virtex-7 and Aveo U280 FPGA platforms. The hash rate of the proposed system reaches 229.1 kHash/s. Its hash rate, hardware and energy efficiencies are much higher than those of the other works implemented on FPGA and GPU hardware platforms. The proposed hardware architecture is also successfully implemented in an ASIC design using ROHM 180 nm CMOS technology

    Double SHA-256 Hardware Architecture with Compact Message Expander for Bitcoin Mining

    No full text
    In the Bitcoin network, computing double SHA-256 values consumes most of the network energy. Therefore, reducing the power consumption and increasing the processing rate for the double SHA-256 algorithm is currently an important research trend. In this paper, we propose a high-data-rate low-power hardware architecture named the compact message expander (CME) double SHA-256. The CME double SHA-256 architecture combines resource sharing and fully unrolled datapath technologies to achieve both a high data rate and low power consumption. Notably, the CME algorithm utilizes the double SHA-256 input data characteristics to further reduce the hardware cost and power consumption. A review of the literature shows that the CME algorithm eliminates at least 9.68% of the 32-bit XOR gates, 16.49% of the 32-bit adders, and 16.79% of the registers required to calculate double SHA-256. We synthesized and laid out the CME double SHA-256 using CMOS 0.18 μm technology. The hardware cost of the synthesized circuit is approximately 13.88% less than that of the conventional approach. The chip layout size is 5:9mm×9mm, and the correctness of the circuit was verified on a real hardware platform (ZCU 102). The throughput of the proposed architecture is 61.44 Gbps on an ASIC with Rohm 180nm CMOS standard cell library and 340 Gbps on a FinFET FPGA 16nm Zynq UltraScale+ MPSoC ZCU102
    corecore