274 research outputs found

    On the trace identity in a model with broken symmetry

    Get PDF
    Considering the simple chiral fermion meson model when the chiral symmetry is explicitly broken, we show the validity of a trace identity -- to all orders of perturbation theory -- playing the role of a Callan-Symanzik equation and which allows us to identify directly the breaking of dilatations with the trace of the energy-momentum tensor. More precisely, by coupling the quantum field theory considered to a classical curved space background, represented by the non-propagating external vielbein field, we can express the conservation of the energy-momentum tensor through the Ward identity which characterizes the invariance of the theory under the diffeomorphisms. Our ``Callan-Symanzik equation'' then is the anomalous Ward identity for the trace of the energy-momentum tensor, the so-called ``trace identity''.Comment: 11 pages, Revtex file, final version to appear in Phys.Rev.

    Restoration of supersymmetric Slavnov-Taylor and Ward identities in presence of soft and spontaneous symmetry breaking

    Full text link
    Supersymmetric Slavnov-Taylor and Ward identities are investigated in presence of soft and spontaneous symmetry breaking. We consider an abelian model where soft supersymmetry breaking yields a mass splitting between electron and selectron and triggers spontaneous symmetry breaking, and we derive corresponding identities that relate the electron and selectron masses with the Yukawa coupling. We demonstrate that the identities are valid in dimensional reduction and invalid in dimensional regularization and compute the necessary symmetry-restoring counterterms.Comment: 35 pages, LaTeX, 9 postscript figure

    Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach

    Full text link
    Exact diagonalization results are reported for the lowest rotational band of N=6 electrons in strong magnetic fields in the range of high angular momenta 70 <= L <= 140 (covering the corresponding range of fractional filling factors 1/5 >= nu >= 1/9). A detailed comparison of energetic, spectral, and transport properties (specifically, magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies, and exponents of current-voltage power law) shows that the recently discovered rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)] provide a superior description compared to the composite-fermion/Jastrow-Laughlin ones.Comment: Extensive clarifications were added (see new footnotes) regarding the difference between the rotating Wigner molecule and the bulk Wigner crystal; also regarding the influence of an external confining potential. 12 pages. Revtex4 with 6 EPS figures and 5 tables . For related papers, see http://www.prism.gatech.edu/~ph274c

    Conservative versus interventional treatment for spontaneous pneumothorax

    Get PDF
    BACKGROUND: Whether conservative management is an acceptable alternative to interventional management for uncomplicated, moderate-to-large primary spontaneous pneumothorax is unknown. METHODS: In this open-label, multicenter, noninferiority trial, we recruited patients 14 to 50 years of age with a first-known, unilateral, moderate-to-large primary spontaneous pneumothorax. Patients were randomly assigned to immediate interventional management of the pneumothorax (intervention group) or a conservative observational approach (conservative-management group) and were followed for 12 months. The primary outcome was lung reexpansion within 8 weeks. RESULTS: A total of 316 patients underwent randomization (154 patients to the intervention group and 162 to the conservative-management group). In the conservative-management group, 25 patients (15.4%) underwent interventions to manage the pneumothorax, for reasons prespecified in the protocol, and 137 (84.6%) did not undergo interventions. In a complete-case analysis in which data were not available for 23 patients in the intervention group and 37 in the conservative-management group, reexpansion within 8 weeks occurred in 129 of 131 patients (98.5%) with interventional management and in 118 of 125 (94.4%) with conservative management (risk difference, -4.1 percentage points; 95% confidence interval [CI], -8.6 to 0.5; P = 0.02 for noninferiority); the lower boundary of the 95% confidence interval was within the prespecified noninferiority margin of -9 percentage points. In a sensitivity analysis in which all missing data after 56 days were imputed as treatment failure (with reexpansion in 129 of 138 patients [93.5%] in the intervention group and in 118 of 143 [82.5%] in the conservative-management group), the risk difference of -11.0 percentage points (95% CI, -18.4 to -3.5) was outside the prespecified noninferiority margin. Conservative management resulted in a lower risk of serious adverse events or pneumothorax recurrence than interventional management. CONCLUSIONS: Although the primary outcome was not statistically robust to conservative assumptions about missing data, the trial provides modest evidence that conservative management of primary spontaneous pneumothorax was noninferior to interventional management, with a lower risk of serious adverse events. (Funded by the Emergency Medicine Foundation and others; PSP Australian New Zealand Clinical Trials Registry number, ACTRN12611000184976.)

    Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

    Full text link
    A multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg, and here we concentrate our study on some issues related to the spin physics part of this project (referred to as AFTER). We study the nucleon spin structure through pppp and pdpd processes with a fixed-target experiment using the LHC proton beams, for the kinematical region with 7 TeV proton beams at the energy in center-of-mass frame of two nucleons s=115\sqrt{s}=115 GeV. We calculate and estimate the cos2ϕ\cos2\phi azimuthal asymmetries of unpolarized pppp and pdpd dilepton production processes in the Drell--Yan continuum region and at the ZZ-pole. We also calculate the sin(2ϕϕS)\sin(2\phi-\phi_S), sin(2ϕ+ϕS)\sin(2\phi+\phi_S) and sin2ϕ\sin2\phi azimuthal asymmetries of pppp and pdpd dilepton production processes with the target proton and deuteron longitudinally or transversally polarized in the Drell--Yan continuum region and around ZZ resonances region. We conclude that it is feasible to measure these azimuthal asymmetries, consequently the three-dimensional or transverse momentum dependent parton distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ

    On Sets with Cardinality Constraints in Satisfiability Modulo Theories

    Get PDF
    Boolean Algebra with Presburger Arithmetic (BAPA) is a decidable logic that can express constraints on sets of elements and their cardinalities. Problems from verification of complex properties of software often contain fragments that belong to quantifier-free BAPA (QFBAPA). Deciding the satisfiability of QFBAPA formulas has been shown to be NP-complete using an eager reduction to quantifier-free Presburger arithmetic that exploits a sparse-solution property. In contrast to many other NP-complete problems (such as quantifier-free first-order logic or linear arithmetic), the applications of QFBAPA to a broader set of problems has so far been hindered by the lack of an efficient implementation that can be used alongside other efficient decision procedures. We overcome these limitations by extending the efficient SMT solver Z3 with the ability to reason about cardinality constraints. Our implementation uses the DPLL(T) mechanism of Z3 to reason about the top-level propositional structure of a QFBAPA formula, improving the efficiency compared to previous implementations. Moreover, we present a new algorithm for automated decomposition of QFBAPA formulas. Our algorithm alleviates the exponential explosion of considering all Venn regions, significantly improving the tractability of formulas with many set variables. Because it is implemented as a theory plugin, our implementation enables Z3 to prove formulas that use QFBAPA constructs alongside constructs from other theories that Z3 supports (e.g. linear arithmetic, uninterpreted function symbols, algebraic data types), as well as in formulas with quantifiers. We have applied our implementation to verification of functional programs; we show it can automatically prove formulas that no automated approach was reported to be able to prove before

    Impact of integrated multimodal traveler information on auto commuter's mode switching propensity

    Get PDF
    Aim: Real-time traveler information affects auto commuter’s travel behavior. Method: An ordered probit model is used to analyze auto commuter’s mode switching propensity under influence of simulated real-time multimodal traveler information. A travel preference survey is administered to car drivers to gather individual commuter’s travel decisions under integrated multimodal traveler information. Result: It is shown that integrated multimodal traveler information can influence willingness of car drivers to switch mode of travel, while socio-economic characteristics also influence the mode choice decision
    corecore