
On Sets with Cardinality Constraints
in Satisfiability Modulo Theories

EPFL-REPORT-150658, 2010-08-29

Philippe Suter, Robin Steiger, and Viktor Kuncak

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname@epfl.ch

Abstract. Boolean Algebra with Presburger Arithmetic (BAPA) is a
decidable logic that can express constraints on sets of elements and
their cardinalities. Problems from verification of complex properties of
software often contain fragments that belong to quantifier-free BAPA
(QFBAPA). Deciding the satisfiability of QFBAPA formulas has been
shown to be NP-complete using an eager reduction to quantifier-free
Presburger arithmetic that exploits a sparse-solution property. In con-
trast to many other NP-complete problems (such as quantifier-free first-
order logic or linear arithmetic), the applications of QFBAPA to a broader
set of problems has so far been hindered by the lack of an efficient imple-
mentation that can be used alongside other efficient decision procedures.
We overcome these limitations by extending the efficient SMT solver Z3
with the ability to reason about cardinality constraints. Our implemen-
tation uses the DPLL(T) mechanism of Z3 to reason about the top-level
propositional structure of a QFBAPA formula, improving the efficiency
compared to previous implementations. Moreover, we present a new algo-
rithm for automated decomposition of QFBAPA formulas. Our algorithm
alleviates the exponential explosion of considering all Venn regions, sig-
nificantly improving the tractability of formulas with many set variables.
Because it is implemented as a theory plugin, our implementation enables
Z3 to prove formulas that use QFBAPA constructs alongside constructs
from other theories that Z3 supports (e.g. linear arithmetic, uninter-
preted function symbols, algebraic data types), as well as in formulas
with quantifiers. We have applied our implementation to verification of
functional programs; we show it can automatically prove formulas that
no automated approach was reported to be able to prove before.

1 Introduction

Sets of values naturally arise in software that performs discrete computation,
either explicitly, in the form of built-in data types [2] or container libraries, or
implicitly, in the form of program specification constructs [12,23,13]. An intrinsic
part of reasoning about sets is reasoning about sizes of sets, with well-known
associated laws such as the inclusion-exclusion principle |A ∪ B| = |A| + |B| −
|A ∩B|. A natural decidable logic that supports reasoning about set operations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147961236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Philippe Suter, Robin Steiger, and Viktor Kuncak

(union, intersection, complement) as well as reasoning about sizes is a logic
we call BAPA, for Boolean Algebra with Presburger Arithmetic [3, 8]. We here
consider the quantifier-free fragment of BAPA, denoted QFBAPA.

QFBAPA was shown to be NP-complete using a particular encoding into
quantifier-free Presburger arithmetic that exploits an integer analogue of Cara-
théodory theorem [11]. We thus think of QFBAPA as a generalization of SAT that
is similar to SAT from a high-level complexity-theory point of view. From the
modelling aspect, researchers have studied in depth SAT encoding of bitvectors,
uninterpreted function symbols, and linear arithmetic. The richness of QFBAPA
is reflected in the fact that, being propositionally closed, it subsumes SAT. More-
over, no encoding is needed to represent integer linear arithmetic. Crucially, it
supports set operations and cardinality, whose polynomial encoding into SAT
is possible but non-trivial [11]. A number of expressive logics that can impose
constraints on sets can be reduced to QFBAPA [20,10]. This enables not only sim-
pler decision procedures, but, more importantly, combination of formulas from
non-disjoint theory signatures that share set operations.

However, although the QFBAPA satisfiability problem is NP complete, the
NP algorithm [11] has proven difficult for unsatisfiable QFBAPA instances, and
its improvements have primarily helped dealing with satisfiable instances. This
empirical observation is in contrast to the situation for propositional logic, for
which the community developed SAT solvers that are effective in showing unsat-
isfiability for large industrial benchmarks. In this paper we present a QFBAPA
implementation that is effective both for satisfiable and unsatisfiable instances.

Our implementation incorporates an important new algorithmic component:
a decomposition of constraints based on the hypergraphs of common set vari-
ables. This component analyzes the variables occurring in different atomic for-
mulas within a QFBAPA formula and uses the structural property of the formula
to avoid generating all Venn regions.

Our implementation is integrated into the state-of-the-art SMT solver Z3,
whose important feature is efficient support for linear arithmetic [15]. Efficient
integration with Z3 was made possible by the recently introduced theory plugin
architecture of Z3, as well as by an incremental implementation of our algorithm.
In this integration, Z3 processes top level propositional structure of the formula,
providing QFBAPA solver with conjunctions of QFBAPA constraints. Our solver
generates lemmas in integer linear arithmetic and gives them back to Z3, which
incorporates them with other integer constraints. At the same time, Z3 takes care
of equality constraints. The net result is (1) dramatic improvement of efficiency
compared to previously reported QFBAPA implementations (2) the ability to use
QFBAPA cardinality operation alongside all other operations that Z3 supports.
We illustrate the usefulness of this approach through experimental results that
prove the validity of complex verifications condition arising from the verification
of imperative as well as functional programs.

Contributions. In summary, our paper makes the following contributions:

Title Suppressed Due to Excessive Length 3

– decomposition theorems and algorithms for efficient handling of QFBAPA
cardinality constraints, often avoiding the need for exponentially many Venn
regions as in [8], and avoiding complex conditional sums as in [11];

– an incremental algorithm for analyzing QFBAPA syntactic structure and gen-
erating integer arithmetic constraints following the decomposition theorems;

– an implementation of these algorithms as a theory plugin of the Z3 solver,
with support for detecting equalities entailed by QFBAPA constraints and
therefore precise combination with other theories supported by Z3;

– encouraging experimental results for benchmarks arising from verification of
imperative and functional programs.

2 Example

We next illustrate the expressive power of the SMT prover we obtained by in-
corporating our QFBAPA decision procedure into Z3. Given a list datatype in a
functional programming language, consider the question of proving that the set
of elements contained in the list has a cardinality always less than or equal to
the length of the list. The set of elements contained in the list and the length
of the list are computed using natural recursive functions, specified below in the
syntax of the Scala programming language:

def content(list: List[Int]) : Set[Int] = list match {
case Nil ⇒ ∅
case Cons(x, xs) ⇒ {x} ∪ content(xs)
}
def length(list: List[Int]) : Int = list match {

case Nil ⇒ 0
case Cons(x, xs) ⇒ 1 + length(xs)
}

Our goal is to prove the property:

∀list : List[Int] . | content(list) | ≤ length(list)

We proceed by unfolding the recursive definitions sufficiently many times to
obtain the following verification condition:

list 6= Nil =⇒ list = Cons(x, xs)
∧ length(Nil) = 0 ∧ length(Cons(x, xs)) = 1 + length(xs)
∧ content(Nil) = ∅ ∧ content(Cons(x, xs)) = {x} ∪ content(xs)
∧ | content(xs) | ≤ length(xs)

=⇒ | content(list) | ≤ length(list)

Note that the formula includes reasoning about integers, algebraic data types,
sets, and cardinalities of sets. To the best of our knowledge, the implementation
we present in this paper is the only one that is complete for proving the validity of
formulas with such operators. The proof is found using Z3’s DPLL(T) algorithm,

4 Philippe Suter, Robin Steiger, and Viktor Kuncak

which, among others, performs cases analysis on whether list is empty. It relies
on Z3 to support arithmetic, congruence properties of functions, and algebraic
data types. Finally, it crucially relies on invocations of our QFBAPA plugin. In
response to currently asserted QFBAPA constraints, our plugin generates integer
constraints on Venn regions that are chosen to ensure that the relationships
between sets are handled in a complete way. The entire theorem proving process
takes negligible time (see Section 6 for experimental results).

3 Decomposition in Solving BAPA Constraints

In this section, we consider formulas over finite sets of uninterpreted elements
from a domain E. We show in Section 4 how we combined QFBAPA with other
theories to obtain a theory of sets of interpreted elements.
Syntax. Figure 1 presents the syntax of QFBAPA. We use vars(φ) to denote
the set of free set variables occurring in φ.

φ ::= A | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ
A ::= S1 = S2 | S1 ⊆ S2 | T1 = T2 | T1 ≤ T2

S ::= s | ∅ | U | S1 ∪ S2 | S1 ∩ S2 | S1 \ S2 | Sc

T ::= i | K | T1 + T2 | K · T | |S |
K ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .

Fig. 1. Quantifier-Free Formulas of Boolean Algebra with Presburger Arithmetic
(QFBAPA). Sc denotes the complement of the set S with respect to the universe U ,
that is, U \ S.

Definition 1. One central notion throughout the presentation of the theorems
and the decision procedure is the notion of Venn region. A Venn region of n sets
S = {S1, . . . , Sn} is one of the 2n sets described by:

n⋂
i=1

Sαi
i

where Sαi
i is either Si or Sc

i . By construction, the 2n regions form a partition of
U . We write venn(S) to denote the set of all Venn regions formed with the sets
in S.

Semantics. An interpretation M of a QFBAPA formula φ is a map from the
set variables of φ to finite subsets of E and from the integer variables of φ to
values in Z. It is a model of φ, denoted M |= φ if the following conditions are
satisfied:

Title Suppressed Due to Excessive Length 5

– UM is a finite subset of E and ∅M is the empty set
– for each set variable S of φ, SM ⊆ UM
– for each integer variable k of φ, kM ∈ Z
– when =, ⊆, ∅, ∪, ∩, \ and the cardinality function | · | are interpreted as

expected, φ evaluates to true in M

Definition 2. We define ∼V to be the equivalence relation on interpretations,
parametrized by a set of set variables V , such that:

M1∼V M2 ⇐⇒ ∀v ∈ venn(V) . | vM1 | = | vM2 |

Definition 3. Let M be an interpretation and f : E → E a bijection from the
interpretation domain to itself (a permutation function). We denote by f [M] the
interpretation such that:

– Uf [M] = {f(u) | u ∈ UM}
– for each set variable S interpreted in M, Sf [M] = {f(u) | u ∈ SM}
– for each integer variable k interpreted in M, kf [M] = kM

Theorem 1. Let φ be a QFBAPA formula, M a model of φ and f : E → E a
bijection, then f [M] |= φ.

Proof. Prove by induction that tf [M] = f [tM] for every set algebra term t. By
bijectivity of f , | tf [M] | = | f [tM] |, so values of all integer-valued terms remain
invariant under f . Finally, note that S1 ⊆ S2 reduces to |S1 \ S2 | = 0 whereas
S1 = S2 reduces to |S1 \ S2 | = 0 ∧ |S2 \ S1 | = 0.

3.1 A Simple Decision Procedure for QFBAPA

A simple technique for solving QFBAPA formulas is to reduce the problem to
integer linear arithmetic as follows. Introduce a fresh integer variable for each
Venn region in venn(vars(φ)). Rewrite each constraint of the form S1 = S2 as
S1 ⊆ S2 ∧ S2 ⊆ S1, and each constraint of the form S1 ⊆ S2 as |S1 \ S2 | = 0.
Finally, use sums over the integer variables representing the Venn regions to
rewrite the cardinality constraints. As an example, consider the formula

|A | > 1 ∧A ⊆ B ∧ |B ∩ C | ≤ 2

and the naming of the Venn regions venn({A,B,C}) shown in Figure 2. Rewrite
the constraints as

k1 + k4 + k5 + k7 > 1 ∧ k1 + k5 = 0 ∧ k7 + k6 ≤ 2 ∧ ki ≥ 0 for i ∈ {0, . . . , 7}

A model for this integer formula is, for example,

k4 = 1, k7 = 1, ki = 0 for i /∈ {4, 7}

6 Philippe Suter, Robin Steiger, and Viktor Kuncak

k1

k2

k3

k4

k5

k6

k7

k0

A

B

C

Fig. 2. Naming of the Venn regions of set variables A, B, and C using integer variables.

From the model for integer variables we can build a model for the QFBAPA
formula by picking distinct elements from E for each Venn region. In this case
we can construct, for example,

U = {e1, e2}, A = {e1, e2}, B = {e1, e2}, C = {e2}
This reduction is simple to understand and to implement, but always requires 2N

integer variables, where N is the number of elements in vars(φ). In the following,
we show how to reduce this number considerably in many cases that arise in
practice.

Note that what we describe below is largely orthogonal to the NP proce-
dure in [11]. Our results should in principle apply both to the naive procedure
sketched above, and to the sparse encoding procedure in [11]. Note that the NP
procedure from [11], although theoretically optimal, has so far been shown to be
practically useful only for satisfiable cases. For unsatisfiable cases the sparse en-
coding generates quantifier-free Presburger arithmetic formulas that are difficult
for current SMT solver implementations.

3.2 Decomposing Conjunctions of QFBAPA Formulas

The decision procedure presented in Section 3.1 requires many integer variables
because it uses a variable for the intersection of every combination of set vari-
ables. The intuition behind the following result is that permutation of elements
between sets that are not related by a constraint in a formula does not affect
the satisfiability of that formula.

Theorem 2. Let φ1 and φ2 be two QFBAPA formulas. Let V1 and V2 denote the
sets of set variables appearing in φ1 and φ2 respectively. Let VS = V1 ∩V2 be the
set of shared variables. Let KS represent the set of shared integer variables. The
QFBAPA formula φ ≡ φ1 ∧ φ2 is satisfiable if and only if there exists a model
M1 for φ1 and a model M2 for φ2 such that, for each integer variable k ∈ KV ,
kM1 = kM2 , and such that M1∼VS

M2.

Proof. We construct a modelM for φ by extendingM1 to the variables in V2\VS .
(The other direction is immediate.) We show that there exists a permutation f

Title Suppressed Due to Excessive Length 7

on E such that f [SM2] = SM1 for each Venn region of venn(VS). In other words,
f is a bijection that projects the interpretation in M2 of all intersections of the
shared variables to their interpretation in M1. We construct f as follows: for
each Venn region v ∈ venn(VS), let fv be a bijection from vM2 to vM1 . Note
that fv always exists because vM1 and vM2 have the same cardinality. Let f?

be
⋃
v∈venn(VS) fv. Observe that f? is a bijection from UM2 to UM1 , because

venn(VS) is a partition of U in both models To obtain the desired f , we can
extend f? to the domain and range E by taking its union with any bijection
from E \ UM2 to E \ UM1 . The model M = M1 ∪ f [M2] is a model of φ1

(trivially) and of φ2 (by Theorem 1), therefore, it is a model of φ.

The following result is a generalization of Theorem 2 for a conjunction of
arbitrarily many constraints.

Theorem 3. Let φ1, . . . , φn be n QFBAPA formulas. Let Vi denote vars(φi) for
i ∈ {1, . . . , n}. Let

VS =
⋃

1≤i<j≤n

Vi ∩ Vj

be the set of all variables that appear in at least two sets Vi and Vj. The formula
φ1 ∧ . . . ∧ φn is satisfiable if and only if: 1) there exist models M1, . . . , Mn

such that, for each i, Mi |= φi and 2) there exists an interpretation M of the
variables VS such that M∼VS∩Vi

Mi for each 1 ≤ i ≤ n.

(Note that the conditions imply that |UM | = | UMi | for each i.) The proof
follows the idea of the proof of Theorem 2: it suffices to show that one can
extend the model M to each model Mi by finding a bijection fi. Note that fi
is guaranteed to exist because M∼VS∩Vi Mi.

Remark. It is not sufficient that for each 0 ≤ i < j ≤ n, Mi ∼(Vi∩Vj) Mj (i.e.
that there exists bijections between each modelMi andMj pairwise). A simple
counter-example is given by the (unsatisfiable) constraints:

φ1 ≡ |A | = 1 ∧ |B | = 1 ∧ |A ∩B | = 1
φ2 ≡ |A | = 1 ∧ |C | = 1 ∧ |A ∩ C | = 1
φ3 ≡ |B | = 1 ∧ |C | = 1 ∧ |B ∩ C | = 0

Although any conjunction φi∧φj can be shown satisfiable using Theorem 2, the
conjunction φ1 ∧ φ2 ∧ φ3 is unsatisfiable, because a common model M cannot
be built from models for each three constraints.

Lemma 1. Let φ1, . . . , φn be n QFBAPA formulas, and let V1, . . . , Vn, VS be
defined as above. Assume there exist M,M1, . . . ,Mn satisfying the conditions
of Theorem 3 and the additional condition that:

| UM | ≥ |
⋃
S∈VS

SM |+
n∑
i=1

|
⋃

S∈Vi\VS

SMi |

8 Philippe Suter, Robin Steiger, and Viktor Kuncak

A

B
B B

C

D

k0

k1

k2

k3

k4

k5 k6

k7

k8

k9

k10

k11

k12

k13

Fig. 3. Independent naming of the Venn regions of set variables V1 = {A,B}, VS =
{B}, and V2 = {B,C,D}.

Then there exists a model Md such that, for any two sets Si ∈ Vi \ VS and
Sj ∈ Vj \ VS (with i 6= j), if (1) ∀S ∈ VS ∩ Vi . Mi |= Si 6= S and (2)
∀S ∈ VS ∩ Vj . Mj |= Sj 6= S, and (3) either Mi |= Si 6= ∅ or Mj |= Sj 6= ∅,
then Md |= Si 6= Sj.

Intuitively, Lemma 1 states that for two sets variables that appear in different
constraints and that are not shared, if there exists a model in which these sets
are not empty and are not equal to some shared set variable, then there exists a
model in which the two sets are not equal. The correctness follows from the fact
that with UM sufficiently large, it is always possible to find bijections fi such
that for each i the non-shared sets are mapped to a different subset of U . We
omit the details in the interest of space.

Lemma 2. The additional conditions of Lemma 1 are fulfilled is when E is
infinite and | U | is not constrained in any formula φi.

This result is important for the combination of QFBAPA with other theories,
as explained in Section 4. The proof follows from the fact that with an infinite
domain E and an unconstrained universe U , if there exists a model, we can
extend it to a model M where | UM | is sufficiently large.

A decision procedure based on decompositions. Theorem 3 yields a de-
cision procedure for the satisfiability of conjunctions of QFBAPA constraints
φ1 ∧ . . . ∧ φn : independently for φ1 to φn, introduce integer variables for the
regions of venn(V1), . . . , venn(Vn) respectively, then introduce fresh variables
for the regions of venn(VS), where VS is computed as in the theorem. Finally,
constrain the sums of variables representing the same regions to be equal. (This
ensures that the bijections fi can be constructed in the satisfiable case.) As an
example, consider the formula

|A \B | > |A ∩B | ∧B ∩ C ∩D = ∅ ∧ |B \D | > |B \ C |

Let φ1 be the first conjunct and φ2 the other two. We have V1 = {A,B} and
V2 = {B,C,D}. Using the naming for regions shown in Figure 3, we obtain the

Title Suppressed Due to Excessive Length 9

integer constraints

k1 > k3 reduction of φ1

∧ k13 = 0 ∧ k7 + k10 > k7 + k11 reduction of φ2

∧ k4 = k0 + k1 = k6 + k8 + k9 + k12 representations of |Bc |
∧ k5 = k2 + k3 = k7 + k10 + k11 + k13 representations of |B |

A possible satisfying assignment for the integer variables is k4 = 2, k0 = k1 =
k2 = k5 = k8 = k9 = k10 = 1, and k3 = k6 = k7 = k11 = k12 = k13 = 0. From
these values, we can build the assignment to set variables

U1 = {e1, e2, e3}, A = {e1}, B = {e2} for φ1

U2 = {e4, e5, e6}, B = {e4}, C = {e4, e5}, D = {e6} for φ2

Finally, to build a model for φ1∧φ2, we need to construct two bijections f1 and f2
such that f1(e4) = f2(e2) and f1[{e5, e6}] = f2[{e1, e3}]. This is always possible
in this decision procedure, because we constrain the sizes of the Venn regions of
shared variables to be equal. Intuitively, the freedom in the construction for this
example comes from the fact that when we merge the models, the overlapping
between C or D and A is unconstrained: we can choose to map either e5 or e6
to the same element as e1, in which case either C or D will share an element
with A. So one possible model for φ is

A = {e1}, B = {e2}, C = {e1, e2}, D = {e3}

(Here we chose the identity function for f1.) Note that this model also satisfies
the property of models described in Lemma 1, since in this interpretation, A 6= C
and A 6= D.

3.3 Hypertree Decompositions

In general, and as in the previous example, the constraints φi in Theorem 3 can
contain top-level conjunctions. It is thus in principle possible to decompose them
further. In this section, we introduce a hypergraph representation of constraints
from which it is straightforward to apply the decision procedure presented above
recursively.

Definition 4. Let φ a QFBAPA formula and let V = vars(φ). Let φ1, . . . , φn be
top-level conjuncts of φ and V1, . . . , Vn the sets of variables appearing in them
respectively. We assume without loss of generality that Vi 6= Vj for i 6= j. (If
two constraints φi and φj have the same set of variables, consider instead the
constraint φi ∧φj.) Let V denote {V1, . . . , Vn}. Let H = (V ,E) be a hypergraph
on the set of sets of variables V (so E ⊆ 2V). Let l : E → 2V be a labeling
function that associates to each hyperedge a subset of the set variables of φ (that
subset need not be one of Vi). We call H a hypertree decomposition of φ if the

10 Philippe Suter, Robin Steiger, and Viktor Kuncak

{A, B}
{B, C} {C, D, F}

E1

E2

E3

{C, D, G} {G, H}

Fig. 4. A hypertree decomposition of (1). The labeling is given by: l(E1) = {B},
l(E2) = {C,D}, l(E3) = {G}.

following properties hold:

(H1) ∀Vi, Vj . Vi ∩ Vj 6= ∅ =⇒ ∃E ∈ E . (Vi ∪ Vj) ⊆ E ∧ (Vi ∩ Vj) ⊆ l(E)
(H2) ∀E ∈ E,∀V ∈ V . V ∈ E ⇐⇒ V ∩ l(E) 6= ∅
(H3) H is acyclic1

Property (H1) states that two nodes that share at least one variable must be
connected with an hyperedge whose label contains at least their shared variables,
and Property (H2) states that a node is contained in a hyperedge if and only if
the label of that hyperedge shares at least one set variable with the node. Note
that a formula φ admits in general many distinct hypertree decompositions.
For instance, the hypergraph H = (V , E) with a single hyperedge E = V and
l(E) = V always satisfies Definition 4. To illustrate hypertree decompositions,
consider the (unsatisfiable) formula

|A ∪B | ≤ 3 ∧ C ⊆ B ∧ | (C ∩D) \ F | = 2 ∧ | (C ∩G) \D | = 2 ∧H ⊆ G (1)

If we number the conjuncts from 1 to 5, we have V1 = {A,B}, V2 = {B,C}, V3 =
{C,D, F}, V4 = {C,D,G}, V5 = {G,H}. Figure 4 shows a possible hypertree
decomposition of (1). The intuition behind hypertree decompositions is that
hyperedges represent set of constraints, and that models for these sets need to
agree only on the variables they share in their common nodes.

Reduction to integer arithmetic from hypertrees. We show now how to
adapt the decision procedure presented at the end of Section 3.2 to hypertree
decompositions. We proceed as follows: for each set of set variables Vi (each
node in the hypertree), we introduce integer variables for all regions venn(Vi).
Then, for each hyperedge E, we add variables for the regions venn(l(E)). Finally,
for each node Vi and each hyperedge E such that Vi ∈ l(E), we constrain the
sums of variables describing the same Venn regions to be equal. For each v ∈
1 We define as a cycle any set of at least two hyperedges such that there exists a

node reachable from itself by traversing all hyperedges in the set. This implies in
particular that no two hyperedges intersect on more that one node. Note that this
is more restrictive than the definition of a hypertree as a hypergraph that admits a
tree as a host graph.

Title Suppressed Due to Excessive Length 11

venn(Vi ∩ l(E)), we generate the constraint:∑
v1 ∈ venn(Vi)

s.t.v1 ⊆ v

kVi
(v1) =

∑
v2 ∈ venn(l(E))

s.t.v2 ⊆ v

kl(E)(v2)

where kVi
(·) and kl(E)(·) denote the integer variable representing a Venn region

in the naming scheme for the Venn regions of Vi and l(E) respectively.

4 Combination

We now consider the question of combining QFBAPA with other theories inter-
preted over infinite domains. We identify two points of interest: 1) the range of
the cardinality function is the integers 2) sets should be built over an interpreted
domain. For these two reasons, the combined theories are non-disjoint and we
cannot simply apply Nelson-Oppen combination [17] or similar techniques. In
the following we show how we handled these points and how, as a result, our
integrated decision procedure can prove constraints such as, for example,

(S1 = {1, 2, 3, 4} ∧ S2 ⊆ S1 ∧ S2 6= ∅) =⇒ |S2 | ∈ S1

Reduction to the integers. We handle constraints on sets with cardinalities
by reducing them to integer linear arithmetic using the translation presented
in Section 3.3. Assume for now a fixed naming of Venn regions (we describe in
Section 5 how we maintain a hypertree and thus a naming in the presence of
incremental reasoning). For each set constraint S1 ⊆ S2 or S1 = S2, we add an
axiom constraining the integer representation of the set variables in the atom.
For instance, using the naming of Venn regions in Figure 2, we would add for
the constraint A ∪B ⊆ C the implication

A ∪B ⊆ C =⇒ k1 + k2 + k4 = 0

Similarly, for each cardinality term |S |, we add an axiom expressing the cardi-
nality in terms of integer variables. Using the same naming as above, we would
for instance add for the term |C \ B | the equality |C \ B | = k3 + k5. These
axioms enforce that whichever boolean values the SMT solver assigns to the set
predicate, it will be forced to maintain for the integer variables an assignment
that is consistent with the constraints on the sizes of Venn regions.
Interpreted elements. When considering sets in combination with other the-
ories, it is natural to allow the use of the predicate e ∈ S denoting that a
given set contains a particular (interpreted) element, or constant sets {e1, e2}.
For the simplicity of the argument, we assume here that all sets have the same
underlying element sort E. We handle interpreted elements such as e, e1 and
e2 by adding to the logic two connecting functions, singleton : E → Set and
element : Set → E. We create for each interpreted element that appears in a

12 Philippe Suter, Robin Steiger, and Viktor Kuncak

predicate e ∈ S or in a constant set a singleton set term singleton(e), and we
add the axioms | singleton(e) | = 1 and element(singleton(e)) = e. So singleton
is interpreted as a constructor that builds a singleton set from an element, and
element as a function that for singleton sets computes its element, and that is
uninterpreted otherwise. We can thus rewrite e ∈ S as singleton(e) ⊆ S and con-
stant sets as unions of singletons. The connecting functions are used to propagate
equalities: when two elements are found to be equal in their theory, congruence
closure will conclude that their singleton sets (if they exist) need to be equal as
well. The other direction is covered in the following paragraph.
Communicating equalities. The reduction to integer linear arithmetic en-
sures that if two sets must be equal, then the sizes of the Venn regions of their
symmetric difference will be constrained to be 0. However, we may also need
to detect that if their symmetric difference is constrained to be empty by some
integer constraints, then the sets must be equal. To enforce this, we could, for
each pair of set variables (S1, S2) generate an axiom equivalent to

(|S1 \ S2 | = 0 ∧ |S2 | \ |S1 | = 0) =⇒ S1 = S2

where the cardinality terms would be rewritten using the naming of set regions
for S1 and S2. However, because not every pair of set variable appears together in
some constraint, our hypertree decomposition does not in general define names
for the intersections of any variables S1 and S2. Our solution is to generate such
axioms for all pairs of variables that appear together in a node of the hypergraph.
Additionally, for each set variable we generate the axiom |S | = 0 ⇐⇒ S = ∅.
We argue that, for sets that range over an infinite domain (such as the integers),
this is sufficient. Consider two set variables S1 and S2 that do not appear in
a common node. From lemmas 1 and 2, we have that as long as S1 or S2 is
non-empty or distinct from a shared set variable, there exists a model in which
S1 6= S2. Both cases are covered by the introduced axioms. Indeed, even if
the two variables are equal to a different shared variable, by transitivity of the
equality, their equality will be propagated. We thus have the property that any
two set variables that are not constrained to be equal can be set to be distinct
in a model. This is consistent with the theory combination approach taken in
Z3 [15].

5 Implementation

We implemented a reduction from QFBAPA constraints on sets of interpreted
elements2 using the results from Section 3 as an extension of the state-of-the-art
SMT solver Z3 [16]. Although we are in effect performing non-disjoint theory
combination as explained in the previous section, we used the mechanism of
theory plugin extensions to interface with the prover. Because such extensions
can add arbitrary axioms (i.e. that are not restricted to theory elements) to the
logical context at any time, this was not a major limitation. We wrote our theory
2 In the current implementation, we handle only sets of integers

Title Suppressed Due to Excessive Length 13

extension in Scala and used the Java Native Interface [14] to access the C API of
Z3.3 We did not observe any significant overhead in the forwarding of function
calls from and to the Java virtual machine.

Incremental introduction of Venn regions. Our theory extension receives
messages from the core solver whenever a constraint on sets or an application
of the cardinality operator is added to the logical context. We maintain at all
times a hypertree decomposition H of the conjunction of all constraints that are
on the stack. Whenever a new constraint φi is pushed to the stack, we apply the
following steps:

1. We compute Vi = vars(φi).
2. If there is a node in H labeled with Vi, we use the naming of Venn regions

in that node to generate the axiom expressing the reduction of φi and skip
the following steps.

3. Else we introduce a new node Vi and we create fresh integer variables for
each region of venn(Vi).

4. For each node Vj inH such that Vi∩Vj 6= ∅, we add a hyperedge E = {Vi, Vj}
labeled with l(E) = Vi ∩ Vj .

5. In the new graph, we collapse any introduced cycle as follows: let E1, . . . , En
be the hyperedges that participate in the cycle. We introduce a new hyper-
edge E labeled with

⋃
i∈{1,...,n} l(Ei) and whose content is the union of the

contents of E1, . . . , En. We then remove from the graph the edges E1 to En.
6. For each newly created edge E in the obtained, acyclic, hypergraph we in-

troduce fresh integer variables to denote the regions of venn(l(E)).
7. Finally, for each node in the new edge, we constrain the sums of integer

variables that denote the same Venn regions to be equal.

Note that all introduced integer variables are additionally constrained to be
non-negative. When constraints are popped from the stack:

1. We remove from H all nodes that were created for these constraints, if any.
2. For each hyperedge E edge that contained at least one removed variable, we

check whether it now contains only one node, in which case we delete it.

Removing such nodes and edges provides two benefits: constraints added in a
different search branch may generate a smaller (less connected) hypertree, and
Z3 has the opportunity to remove from its clause database reduction axioms
that have become useless.

We efficiently detect cycles by maintaining equivalence classes between nodes
that correspond to the connected components in the hypertree. We can then
check, when we introduce a new hyperedge, whether it connects nodes from
different equivalence classes, which corresponds to our definition of a cycle. We
use a union-find data-structure to maintain the equivalence classes.

3 Our Scala interface to Z3 is available at http://lara.epfl.ch/dokuwiki/jniz3.

http://lara.epfl.ch/dokuwiki/jniz3

14 Philippe Suter, Robin Steiger, and Viktor Kuncak

6 Evaluation

We evaluated our implementation using benchmarks from two verification
sources. Figure 5 shows our experimental results.4

Benchmark status sets cons. Venn regs. prop. prev. best our time

cade07-1 unsat 1 1 2 1.00 < 0.1 < 0.1
cade07-2 unsat 2 1 4 1.00 < 0.1 < 0.1
cade07-2a unsat 6 5 28 0.44 1.8 < 0.1
cade07-2b sat 6 5 28 0.44 < 0.1 < 0.1
cade07-3 unsat 2 1 4 1.00 < 0.1 < 0.1
cade07-3a unsat 5 4 16 0.50 0.4 < 0.1
cade07-3b sat 5 4 16 0.50 < 0.1 < 0.1
cade07-4 unsat 5 5 80 2.50 0.5 < 0.1
cade07-4b sat 5 5 76 2.38 0.1 < 0.1
cade07-5 unsat 7 5 168 1.31 13.6 < 0.1
cade07-5b sat 7 5 168 1.31 0.4 < 0.1
cade07-6 unsat 6 6 32 0.50 0.4 < 0.1
cade07-6a unsat 16 20 596 0.01 > 100 0.3
cade07-6b sat 16 22 1120 0.02 0.8 0.3
cade07-6c sat 16 20 596 0.01 0.9 0.4

listContent sat 3 4 14 1.75 < 0.1
listContent-ax unsat 4 5 16 1.00 < 0.1
listReverse sat 6 6 26 0.41 < 0.1
listReverse-ax unsat 9 11 308 0.60 0.2
setToList sat 6 8 76 1.19 < 0.1
setToList-ax unsat 7 9 114 0.89 < 0.1
listConcat sat 11 19 54 0.03 0.2
listConcat-ax unsat 28 33 268 < 0.01 0.4
treeContent sat 4 5 24 1.50 0.1
treeContent-ax unsat 6 7 28 0.44 0.1
treeMirror sat 6 6 20 0.31 < 0.1
treeMirror-ax unsat 11 11 572 0.28 0.3
treeToList sat 8 10 24 0.09 0.1
treeToList-ax unsat 29 35 2362 < 0.01 1.7

Fig. 5. Experimental results. The column “sets” is the number of set variables, “cons.”
is the maximal number of constraints on the stack, “Venn regs.” is the maximal number
of distinct Venn regions created from the hypertree structure, “prop.” is the propor-
tion of created Venn regions compared to the 2N naive naming scheme, “prev. best”
indicates the previously best solving time, and “time” is the running time with the
new implementation. All times are in seconds. The experiment was conducted using a
2.66GHz Quad-core machine running Ubuntu, and using Z3 2.11.

4 All benchmarks and the set of axioms we used are available from http://lara.

epfl.ch/~psuter/vmcai2011/.

http://lara.epfl.ch/~psuter/vmcai2011/
http://lara.epfl.ch/~psuter/vmcai2011/

Title Suppressed Due to Excessive Length 15

Jahob benchmarks. We included all benchmarks from [11] in our evalu-
ation. These formulas express verification conditions generated with the Ja-
hob system [7] for programs manipulating (abstractions of) pointer-based data-
structures such as linked lists. In [11], the benchmarks were used to compare
the efficiency of the sparse encoding into linear arithmetic with the explicit one
(as in Section 3.1). We indicate for these benchmarks the previously best time
using either method. It is important to note that it was shown in [11] that the
two methods were complementary: the sparse encoding outperformed the ex-
plicit one for sat instances and vice-versa. We do not claim that the absolute
difference in time is a significant measure of our algorithmic improvements, but
rather provide these numbers to illustrate that our new techniques can be used
to efficiently handle sat and unsat instances.
Functional programs. We also included new benchmarks consisting of veri-
fication conditions for Scala functions without side effects. Additionally to sets
and elements, these examples contain constraints on algebraic data types and
functions symbols. Each verification condition contains at least one (recursive)
function call. We first treated these function symbols as uninterpreted. We then
used universally quantified axioms to define the interpretation of the functions
and used Z3’s pattern-based instantiation mechanism to apply the axioms. With-
out the axioms, all formulas were invalid (sat), and with the axioms, they were
all proved valid.

7 Related Work

To the best of our knowledge, the only previous implementation that is com-
plete for QFBAPA and reports performance on benchmarks is [11]. We show
significant improvement over the existing benchmarks. While results in [11] were
unable to handle unsatisfiable formulas with 16 variables, we report success on
formulas with 29 variables, which were automatically generated from verification
of functional programs.

The quantifier-free complexity of QFBAPA was settled in [11], and the com-
plexity of the quantified case as well as the first quantifier elimination imple-
mentation was described in [8]. The logic itself dates back at least to [3]; among
more recent descriptions in multi-sorted form is [22].

The work of combination of QFBAPA with other decidable theories has so far
included implementation as part of the Jahob system [7], which requires manual
decomposition steps to be complete [23, 24]. A complete methodology for using
QFBAPA as a glue logic for non-disjoint combination was introduced in [20], with
additional useful cases introduced in [19, 21, 9], some of which are and surveyed
in [10]. The combination method we describe is simple, in that it does not require
exchanging set constraints between different theories that share sets of objects.
In that sense, it corresponds to the multi-sorted combination setup of [22], which
introduces a non-deterministic procedure that was, to the best of our knowledge,
not implemented. Combinations of theories that have finite domains has been
explored in [6]. In this paper we have focused on combinations with integers, but
we believe that our approach can be adapted to more general cases.

16 Philippe Suter, Robin Steiger, and Viktor Kuncak

Our decomposition of formulas was inspired by the algorithms for bounded
(hyper)tree width from constraint satisfaction literature [4], although we do not
directly follow any particular decomposition algorithm from the literature. These
algorithms are typically used to reduce subclasses of NP-hard constraint satis-
faction problems over finite domains to polynomial-time algorithms. To the best
of our knowledge, they have not been applied before to satisfiability of sets with
cardinality operators. Our results suggest that this approach is very promising
and we expect it to extend to richer logics containing QFBAPA, such as [21].

Research in program analysis has used cardinality constraints in abstract
domains [5, 18], typically avoiding the need for a full-fledged QFBAPA decision
procedure. Thanks to our efficient implementation of QFBAPA, we expect that
precise predicate abstraction approaches [1] will now also be able to use QFBAPA
constraints.

Acknowledgments

We thank Nikolaj Bjørner and Leonardo de Moura for their help with Z3.

References

1. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. STTT 9(5-6), 505–525 (2007)

2. Dewar, R.K.: Programming by refinement, as exemplified by the SETL represen-
tation sublanguage. ACM TOPLAS (July 1979)

3. Feferman, S., Vaught, R.L.: The first order properties of products of algebraic
systems. Fundamenta Mathematicae 47, 57–103 (1959)

4. Gottlob, G., Greco, G., Marnette, B.: Hyperconsistency width for constraint sat-
isfaction: Algorithms and complexity results. In: Graph Theory, Computational
Intelligence and Thought (2009)

5. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: POPL ’09. pp. 239–251 (2009)

6. Krstic, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo para-
metric theories. In: TACAS. LNCS, vol. 4424, pp. 602–617 (2007)

7. Kuncak, V.: Modular Data Structure Verification. Ph.D. thesis, EECS Department,
Massachusetts Institute of Technology (February 2007)

8. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger
Arithmetic. J. of Automated Reasoning (2006)

9. Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures
(invited paper). In: CSL (2010)

10. Kuncak, V., Piskac, R., Suter, P., Wies, T.: Building a calculus of data structures.
In: Verification, Model Checking, and Abstract Interpretation (VMCAI) (2010)

11. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Alge-
bra with Presburger Arithmetic. In: CADE-21 (2007)

12. Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking for data structure
consistency. In: VMCAI (2005)

13. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: ESOP’06
(2006)

Title Suppressed Due to Excessive Length 17

14. Liang, S.: The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley (1999)

15. de Moura, L., Bjørner, N.: Model-based theory combination. Electronic Notes in
Theoretical Computer Science 198(2), 37–49 (2008)

16. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337–340
(2008)

17. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
TOPLAS 1(2), 245–257 (1979)

18. Pérez, J.A.N., Rybalchenko, A., Singh, A.: Cardinality abstraction for declarative
networking applications. In: CAV. pp. 584–598 (2009)

19. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: POPL (2010)

20. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: FroCoS: Frontiers in Combining Systems (2009)

21. Yessenov, K., Kuncak, V., Piskac, R.: Collections, cardinalities, and relations. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI) (2010)

22. Zarba, C.G.: Combining sets with integers. In: Frontiers of Combining Systems
(FroCoS). pp. 103–116 (2002)

23. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: PLDI (2008)

24. Zee, K., Kuncak, V., Rinard, M.: An integrated proof language for imperative
programs. In: PLDI (2009)

	On Sets with Cardinality Constraints in Satisfiability Modulo Theories EPFL-REPORT-150658, 2010-08-29

