2 research outputs found

    Regolith science with the cameras on the MMX Rover

    Get PDF
    The JAXA Martian Moons Exploration (MMX) mission [1] has a primary objective to study the formation and origins of Phobos and Deimos. The MMX spacecraft will also deploy a CNES/DLR rover to the surface of Phobos [2,3]. This rover will be the first of its kind to attempt wheeled-locomotion on a low gravity surface. As such, this rover provides a unique opportunity to study not only the surface properties of Phobos, but also regolith dynamics on small-bodies. This information is valuable for understanding the surface processes and geological history of Phobos in addition to being of high importance to the landing (and sampling) operations of the main MMX spacecraft [1]

    Vulnerability of optical detection systems to megajoule class laser radiative environment

    No full text
    International audienceThe Laser MegaJoule (LMJ) facility will host inertial confinement fusion experiments in order to achieve ignition by imploding a Deuterium-Tritium filled microballoon [1]. In this context an X-ray imaging system is necessary to diagnose the core size and the shape of the target in the 10-100 keV band. Such a diagnostic will be composed of two parts: an X-ray optical system and a detection assembly. The survivability of each element of this diagnostic has to be ensured within the mixed pulse consisting of X-rays, gamma rays and 14 MeV neutrons created by fusion reactions. The design of this diagnostic will take into account optics and detectors vulnerability to neutron yield of at least 1016. In this work, we will present the main results of our vulnerability studies and of our hardening-by-system and hardening-by- design studies
    corecore