79 research outputs found

    Formation and stability of a two-dimensional nickel silicide on Ni (111) an Auger, LEED, STM, and high-resolution photoemission Study

    Full text link
    Using low energy electron diffraction (LEED), Auger electron spectroscopy (AES), scanning tunnelling microscopy (STM) and high resolution photo-electron spectroscopy (HR-PES) techniques we have studied the annealing effect of one silicon monolayer deposited at room temperature onto a Ni (111) substrate. The variations of the Si surface concentration, recorded by AES at 300{\deg}C and 400{\deg}C, show at the beginning a rapid Si decreasing followed by a slowing down up to a plateau equivalent to about 1/3 silicon monolayer. STM images and LEED patterns, both recorded at room temperature just after annealing, reveal the formation of an ordered hexagonal superstructure(rot3xrot3)R30{\deg}-type. From these observations and from a quantitative analysis of HR-PES data, recorded before and after annealing, we propose that the (rot3 x rot3)R30{\deg}superstructure corresponds to a two dimensional (2D) Ni2Si surface silicide.Comment: Journal Physical Review B (2012

    Evidence of silicene in honeycomb structures of silicon on Ag(111)

    Full text link
    In the search for evidence of silicene, a two-dimensional honeycomb lattice of silicon, it is important to obtain a complete picture for the evolution of Si structures on Ag(111), which is believed to be the most suitable substrate for growth of silicene so far. In this work we report the finding and evolution of several monolayer superstructures of silicon on Ag(111) depending on the coverage and temperature. Combined with first-principles calculations, the detailed structures of these phases have been illuminated. These structure were found to share common building blocks of silicon rings, and they evolve from a fragment of silicene to a complete monolayer silicene and multilayer silicene. Our results elucidate how silicene formes on Ag(111) surface and provide methods to synthesize high-quality and large-scale silicene.Comment: 6 pages, 4 figure

    Phosphorene: Fabrication, Properties and Applications

    Full text link
    Phosphorene, the single- or few-layer form of black phosphorus, was recently rediscovered as a twodimensional layered material holding great promise for applications in electronics and optoelectronics. Research into its fundamental properties and device applications has since seen exponential growth. In this Perspective, we review recent progress in phosphorene research, touching upon topics on fabrication, properties, and applications; we also discuss challenges and future research directions. We highlight the intrinsically anisotropic electronic, transport, optoelectronic, thermoelectric, and mechanical properties of phosphorene resulting from its puckered structure in contrast to those of graphene and transition-metal dichalcogenides. The facile fabrication and novel properties of phosphorene have inspired design and demonstration of new nanodevices; however, further progress hinges on resolutions to technical obstructions like surface degradation effects and non-scalable fabrication techniques. We also briefly describe the latest developments of more sophisticated design concepts and implementation schemes that address some of the challenges in phosphorene research. It is expected that this fascinating material will continue to offer tremendous opportunities for research and development for the foreseeable future.Comment: invited perspective for JPC

    Growth and dissolution kinetics of ultra thin silicon films on Cu(100)

    No full text
    International audienc

    High resolution imaging of superficial mosaicity in single crystals using grazing incidence fast atom diffraction

    No full text
    International audienceA new table top technique is used to simultaneously analyze the local morphology of crystalline surfaces as well as the misalignment of large scale domains at the topmost surface layer. The approach is based on fast atom diffraction at grazing incidence (GIFAD); the diffraction pattern yields the structural characteristics and the topology of the surface electronic density with atomic resolution. If superficial mosaicity is present, diffraction patterns arising from each mosaic domain can be distinguished, providing high sensitivity to the properties of each of the domains. Taking NaCl(001) as an example, we observe a discrete tilt angle distribution of the mosaic domains following an arithmetic progression with a 0.025° ± 0.005° difference; a twist mosaic angle of 0.09° ± 0.01° is also observed
    corecore