8 research outputs found

    Genome-wide oligonucleotide-based array comparative genome hybridization analysis of non-isolated congenital diaphragmatic hernia

    No full text
    Non-isolated congenital diaphragmatic hernia (CDH+) is a severe birth defect that is often caused by de novo chromosomal anomalies. In this report, we use genome-wide oligonucleotide-based array comparative genome hybridization (aCGH) followed by rapid real-time quantitative PCR analysis to identify, confirm and map chromosomal anomalies in a cohort of 26 CDH+ patients. One hundred and five putative copy number changes were identified by aCGH in our cohort of CDH+ patients. Sixty-one of these changes (58%) had been previously described in normal controls. Twenty of the remaining 44 changes (45%) were confirmed by quantitative real-time PCR or standard cytogenetic techniques. These changes included de novo chromosomal abnormalities in five of the 26 patients (19%), two of whom had previously normal G-banded chromosome analyses. Data from these patients provide evidence for the existence of CDH-related genes on chromosomes 2q37, 6p22-25 and 14q, and refine the CDH minimal deleted region on 15q26 to an interval that contains COUP - TFII and only eight other known genes. Although COUP - TFII is likely to play a role in the development of CDH in patients with 15q26 deletions, we did not find COUP - TFII mutations in 73 CDH samples. We conclude that the combination of oligonucleotide-based aCGH and quantitative real-time PCR is an effective method of identifying, confirming and mapping clinically relevant copy number changes in patients with CDH+. This method is more sensitive than G-banded chromosome analysis and may find wide application in screening patients with congenital anomalies

    Study protocol: a core outcome set for perinatal interventions for congenital diaphragmatic hernia

    Get PDF
    Background: Congenital diaphragmatic hernia (CDH) is, depending of the severity, a birth defect associated with significant mortality and morbidity. Prenatal screening by ultrasound may detect this condition and comprehensive assessment of severity is possible, allowing for in utero referral to an experienced centre for planned delivery. In an effort to improve outcomes, prenatal interventions to stimulate lung development were proposed. Along the same lines, new postnatal management strategies are being developed. In order to enable proper comparison of novel perinatal interventions as well as outcomes, a set of uniform and relevant outcome measures is required. Core outcome sets (COS) are agreed, clearly defined sets of outcomes to be measured in a standardised manner and reported consistently. Herein we aim to describe the methodology we will use to define a COS for perinatal and neonatal outcomes of foetuses and newborns with congenital diaphragmatic hernia and to draft a dissemination and implementation plan. Methods: We will use the methodology described in the Core Outcome Measures in Effectiveness Trials (COMET) Initiative Handbook. An international steering group will be created to guide the development of the COS. We are systematically reviewing the literature to identify all potential relevant pre- and neonatal outcomes previously used in studies on perinatal interventions for CDH. We will build a consensus on these core outcomes in a stakeholder group using the Delphi method. After completion, a stakeholder meeting will decide on a final COS, using a modified Nominal Group Technique. Thereafter, we will review potential definitions and measurements of these outcomes, and again a consensus meeting will be organised, to finalise the COS before dissemination. Discussion: We have started a procedure to develop a COS for studies on perinatal interventions for congenital diaphragmatic hernia, with the purpose of improving the quality of research, guide clinical practice and improve patient care and eventual use in future clinical trials, systematic reviews and clinical practice guidelines. Trial registration: We prospectively registered this study in the International Prospective Register of Systematic Reviews (PROSPERO) (registration number: CRD42019124399) and The Core Outcome Measures in Effectiveness Trials (COMET) Initiative (registration number:1296)

    Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability

    Get PDF
    Contains fulltext : 202928.pdf (publisher's version ) (Open Access)Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants
    corecore