20 research outputs found

    Essential Oils as Potential Source of Anti-dandruff Agents: A Review

    Full text link
    Background: Dandruff is a frequent occurring scalp problem that causes significant discomfort to approximately 50% population at some stage of life, especially post-puberty and preadult age. Objective: In this review, we aim to summarise the recent findings regarding anti-fungal properties of herbal essential oils against pathogens involved in dandruff prognosis. Methods: A literature search of studies published between 2000 and 2020 was conducted over databases: PubMed, Google Scholar, Scopus, and Science Direct. Literature was explored using the guidelines given in Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Dandruff, characterised by clinical symptoms of dryness, pruritis, scaly, and flaky scalp, is considered as a primary manifestation of seborrheic dermatitis. Amongst various etiological and pathophysiological factors, significant role of yeasts, primarily, species of Malassezia, Candida, has been strongly correlated with dandruff, while incidences of M. furfur, M. restricta and M. globosa are high compared to others. Due to relapse of symptoms with withdrawal of conventional anti-dandruff products, patients find best alternatives in natural products. Essential oils of herbal origin such as tea tree oil, lime oil, rosemary oil, have gained global importance in dermatology. These oils are rich in aromatic secondary metabolites, especially terpenes and phenolic components that impart substantial antimicrobial properties and resisting biofilm production. Conclusion: On the basis of the available information, we can conclude that essential oils have huge potential to be developed as anti-dandruff products, however, further studies are warranted to establish their efficacy in dandruff cure. </jats:sec

    Design and docking of novel series of hybrid xanthones as anti-cancer agent to target human DNA topoisomerase 2-alpha

    No full text
    Topoisomerase (topo) IIα is a homodimeric protein catalyzes topological vicissitudes by adding or by soothing super coiling transpiration, occurs in human DNA during DNA replication as an outcome chromosome segregation and condensation occurs during meiosis I and recombination. To prevent the cleavage and religation activity we administered novel hybrid substituted Xanthone series of drugs. The toxicity prediction showed outstanding results which impetus to study its anticancer activities by targeting topoisomerase (topo) IIα. We developed the homology model of the topoisomerase (topo) IIα due to the unavailability of 3D structure in the Protein Data Bank. Structural assessment of the modeled protein and confirmed the quality of the model. The ligands were docked using Autodock4.2 software and binding energy was reported. The compound XM9, XN2, XM7, XLNU and XNS scored lowest binding energy and highest binding affinity. The interaction sites and the hydrogen bond were observed

    In-Silico Drug Design: A revolutionary approach to change the concept of current Drug Discovery Process

    Get PDF
    Computational methods play a central role in modern drug discovery process. It includes the design and management of small molecule libraries, initial hit identification through virtual screening, optimization of the affinity as well as selectivity of hits and improving the physicochemical properties of the lead compounds. In this review article, computational drug designing approaches have been elucidated and discussed. The key considerations and guidelines for virtual chemical library design and whole drug discovery process. Traditional approach for discovery of a new drug is a costly and time consuming affair besides not being so productive. A number of potential reasons witness choosing the In-silico method of drug design to be a more wise and productive approach. There is a general perception that applied science has not kept pace with the advances of basic science. Therefore, there is a need for the use of alternative tools to get answers on efficacy and safety faster, with more certainty and at lower cost. In-silico drug design can play a significant role in all stages of drug development from the initial lead designing to final stage clinical development
    corecore