6 research outputs found
Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells
BACKGROUND: Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound palmitoleoyl moiety in the N-terminal domain. RESULTS: By combining murine Wnt3a with phospholipid and apolipoprotein A-I, ternary complexes termed nanodisks (ND) were generated. ND-associated Wnt3a is soluble in the absence of detergent micelles and gel filtration chromatography revealed that Wnt3a co-elutes with ND. In signaling assays, Wnt3a ND induced β-catenin stabilization in mouse fibroblasts as well as hematopoietic stem and progenitor cells (HSPC). Prolonged exposure of HSPC to Wnt3a ND stimulated proliferation and expansion of Lin(−) Sca-1(+) c-Kit(+) cells. Surprisingly, ND lacking Wnt3a contributed to Lin(−) Sca-1(+) c-Kit(+) cell expansion, an effect that was not mediated through β-catenin. CONCLUSIONS: The data indicate Wnt3a ND constitute a water-soluble transport vehicle capable of promoting ex vivo expansion of HSPC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-016-0218-5) contains supplementary material, which is available to authorized users
Pathobiological signatures of dysbiotic lung injury in pediatric patients undergoing stem cell transplantation
Hematopoietic cell transplantation (HCT) uses cytotoxic chemotherapy and/or radiation followed by intravenous infusion of stem cells to cure malignancies, bone marrow failure and inborn errors of immunity, hemoglobin and metabolism. Lung injury is a known complication of the process, due in part to disruption in the pulmonary microenvironment by insults such as infection, alloreactive inflammation and cellular toxicity. How microorganisms, immunity and the respiratory epithelium interact to contribute to lung injury is uncertain, limiting the development of prevention and treatment strategies. Here we used 278 bronchoalveolar lavage (BAL) fluid samples to study the lung microenvironment in 229 pediatric patients who have undergone HCT treated at 32 children’s hospitals between 2014 and 2022. By leveraging paired microbiome and human gene expression data, we identified high-risk BAL compositions associated with in-hospital mortality (P = 0.007). Disadvantageous profiles included bacterial overgrowth with neutrophilic inflammation, microbiome contraction with epithelial fibroproliferation and profound commensal depletion with viral and staphylococcal enrichment, lymphocytic activation and cellular injury, and were replicated in an independent cohort from the Netherlands (P = 0.022). In addition, a broad array of previously occult pathogens was identified, as well as a strong link between antibiotic exposure, commensal bacterial depletion and enrichment of viruses and fungi. Together these lung–immune system–microorganism interactions clarify the important drivers of fatal lung injury in pediatric patients who have undergone HCT. Further investigation is needed to determine how personalized interpretation of heterogeneous pulmonary microenvironments may be used to improve pediatric HCT outcomes
Comparison of total body irradiation versus non-total body irradiation containing regimens for de novo acute myeloid leukemia in children
With limited data comparing hematopoietic cell transplant outcomes between myeloablative total body irradiation (TBI) containing and non-TBI regimens in children with de novo acute myeloid leukemia, the aim of this study was to compare transplant-outcomes between these regimens. Cox regression models were used to compare transplant-outcomes after TBI and non-TBI regimens in 624 children transplanted between 2008 and 2016. Thirty two percent (n=199) received TBI regimens whereas 68% (n=425) received non-TBI regimens. Five-year non-relapse mortality was higher with TBI regimens (22% vs. 11%, p<0.0001) but relapse was lower (23% vs. 37%, p<0.0001) compared to non-TBI regimens. Consequently, overall (62% vs. 60%, p=1.00) and leukemia-free survival (55% vs. 52%, p=0.42) did not differ between treatment groups. Grade II-IV acute GVHD was higher with TBI regimens (56% vs. 27%, p<0.0001) but not chronic GVHD. The 3-year incidence of gonadal or growth hormone deficiency was higher with TBI regimens (24% vs. 8%, p<0.001) but there were no differences in late pulmonary, cardiac or renal impairment. In the absence of a survival advantage, the choice of TBI or non-TBI regimen merits careful consideration with the data favoring non-TBI regimens to limit the burden of morbidity associated with endocrine dysfunction
Phase II Trial of Costimulation Blockade With Abatacept for Prevention of Acute GVHD
PURPOSE: Severe (grade 3-4) acute graft-versus-host disease (AGVHD) is a major cause of death after unrelated-donor (URD) hematopoietic cell transplant (HCT), resulting in particularly high mortality after HLA-mismatched transplantation. There are no approved agents for AGVHD prevention, underscoring the critical unmet need for novel therapeutics. ABA2 was a phase II trial to rigorously assess safety, efficacy, and immunologic effects of adding T-cell costimulation blockade with abatacept to calcineurin inhibitor (CNI)/methotrexate (MTX)-based GVHD prophylaxis, to test whether abatacept could decrease AGVHD. METHODS: ABA2 enrolled adults and children with hematologic malignancies under two strata: a randomized, double-blind, placebo-controlled stratum (8/8-HLA-matched URD), comparing CNI/MTX plus abatacept with CNI/MTX plus placebo, and a single-arm stratum (7/8-HLA-mismatched URD) comparing CNI/MTX plus abatacept versus CNI/MTX CIBMTR controls. The primary end point was day +100 grade 3-4 AGVHD, with day +180 severe-AGVHD-free-survival (SGFS) a key secondary end point. Sample sizes were calculated using a higher type-1 error (0.2) as recommended for phase II trials, and were based on predicting that abatacept would reduce grade 3-4 AGVHD from 20% to 10% (8/8s) and 30% to 10% (7/8s). ABA2 enrolled 142 recipients (8/8s, median follow-up = 716 days) and 43 recipients (7/8s, median follow-up = 708 days). RESULTS: In 8/8s, grade 3-4 AGVHD was 6.8% (abatacept) versus 14.8% (placebo) (P = .13, hazard ratio = 0.45). SGFS was 93.2% (CNI/MTX plus abatacept) versus 82% (CNI/MTX plus placebo, P = .05). In the smaller 7/8 cohort, grade 3-4 AGVHD was 2.3% (CNI/MTX plus abatacept, intention-to-treat population), which compared favorably with a nonrandomized matched cohort of CNI/MTX (30.2%, P < .001), and the SGFS was better (97.7% v 58.7%, P < .001). Immunologic analysis revealed control of T-cell activation in abatacept-treated patients. CONCLUSION: Adding abatacept to URD HCT was safe, reduced AGVHD, and improved SGFS. These results suggest that abatacept may substantially improve AGVHD-related transplant outcomes, with a particularly beneficial impact on HLA-mismatched HCT