6 research outputs found

    Vascular mediators in chronic lung disease of infancy: role of endothelial monocyte activating polypeptide II (EMAP II)

    Get PDF
    Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural injury into a new BPD, marked by an arrest in alveolar growth in the lungs of extremely premature infants. This deficient alveolar growth has been associated with a diminution of pulmonary vasculature. Several investigators have described the epithelial / vascular co-dependency and the significant role of crosstalk between vessel formation, alveologenesis, and lung dysplasia's; hence identification and study of factors that regulate pulmonary vascular emergence and inflammation has become crucial in devising effective therapeutic approaches for this debilitating condition. The potent antiangiogenic and proinflammatory protein Endothelial Monocyte Activating Polypeptide II (EMAP II) has been described as a mediator of pulmonary vascular and alveolar formation and its expression is inversely related to the periods of vascularization and alveolarization in the developing lung. Hence the study of EMAP II could play a vital role in studying and devising appropriate therapeutics for diseases of aberrant lung development, such as BPD. Herein, we review the vascular contribution to lung development and the implications that vascular mediators such as EMAP II have in distal lung formation during the vulnerable stage of alveolar genesis

    The Airway Microbiome at Birth.

    Get PDF
    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease

    Clinical trial of a probiotic and herbal supplement for lung health

    Get PDF
    IntroductionDysbiosis of the gut microbiome may augment lung disease via the gut-lung axis. Proteobacteria may contribute to tissue proteolysis followed by neutrophil recruitment, lung tissue injury, and perpetuation of chronic inflammation. To study the effects of probiotics across the gut-lung axis, we sought to determine if a Lactobacillus probiotic and herbal blend was safe and well-tolerated in healthy volunteers and asthmatic patients.MethodsWe conducted a 1-month randomized, open-label clinical trial in Cork, Ireland with healthy and asthmatic patients who took the blend twice a day. The primary endpoint was safety with exploratory endpoints including quality of life, lung function, gut microbiome ecology, and inflammatory biomarkers.ResultsAll subjects tolerated the blend without adverse events. Asthmatic subjects who took the blend showed significant improvements in lung function as measured by forced expiratory volume and serum short chain fatty acid levels from baseline to Week 4. The gut microbiome of asthmatic subjects differed significantly from controls, with the most prominent difference in the relative abundance of the proteobacteria Escherichia coli. Administration of the probiotic maintained overall microbial community architecture with the only significant difference being an increase in absolute abundance of the probiotic strains measured by strain-specific PCR.ConclusionThis study supports the safety and efficacy potential of a Lactobacillus probiotic plus herbal blend to act on the gut-lung axis. However, due to the lack of a control group, a longer blinded, placebo-controlled study will be warranted to confirm the efficacy improvements observed in this trial.Clinical trial registrationhttps://clinicaltrials.gov/, identifier NCT05173168

    Efficacy of a Probiotic and Herbal Supplement in Models of Lung Inflammation

    No full text
    Background: Gut microbiome dysbiosis is associated with lung disease through the gut-lung axis. Abundant proteobacteria increase MMP-9 and contribute to tissue proteolysis followed by neutrophil recruitment, lung tissue injury, and perpetuation of chronic lung disease. We sought to determine if a scientifically formulated probiotic and herbal supplement could attenuate neutrophilic inflammation and improve lung structure and function in models of lung inflammation. Methods: For in vitro experiments, epithelial cells exposed to proteobacteria were treated with resB—a blend of three probiotic Lactobacillus strains and turmeric, holy basil, and vasaka herbal extracts. For in vivo experimentation, mice exposed to pulmonary proteobacteria-derived lipopolysaccharide were treated by gavage with resB. Results: In vitro, the bacterial and herbal components of resB decreased activity of the MMP-9 pathway. Mice exposed to LPS and pre- and post-treated with resB had decreased neutrophil recruitment and inflammatory biomarkers in bronchoalveolar lavage fluid, serum, and lung tissue compared to untreated mice. Conclusions: This study describes the mechanisms and efficacy of probiotic and herbal blend in pre-clinical models of lung injury and inflammation
    corecore