175 research outputs found
Involvement of Serine Threonine Protein Kinase, PknL, from Mycobacterium Tuberculosis H37Rv in Starvation Response of Mycobacteria
The adaptation to nutrient depletion in bacteria involves
a highly organized series of intracellular events that enable
them to adapt to starvation conditions. The regulatory
effect of serine threonine protein kinase, PknL, from
Mycobacterium tuberculosis strain H37Rv was investigated
under nutrient deprived conditions that simulate circumstances
leading to latency. Recombinant PknL was expressed
in Mycobacterium smegmatis strain mc2155 in its
wild type and mutant forms. In vitro growth kinetics experiments
revealed that clone expressing active PknL had
a significant growth advantage under nutrient limiting
conditions. Experiments were conducted to ascertain the
in silico predictions of the involvement of PknL in regulating
glutamine metabolism in mycobacteria. Furthermore,
a role for PknL in cell wall biogenesis/cell division
was shown by scanning electron microscopy
Accuracy of Trace Formulas
Using quantum maps we study the accuracy of semiclassical trace formulas. The
role of chaos in improving the semiclassical accuracy, in some systems, is
demonstrated quantitatively. However, our study of the standard map cautions
that this may not be most general. While studying a sawtooth map we demonstrate
the rather remarkable fact that at the level of the time one trace even in the
presence of fixed points on singularities the trace formula may be exact, and
in any case has no logarithmic divergences observed for the quantum bakers map.
As a byproduct we introduce fantastic periodic curves akin to curlicues.Comment: 20 pages, uuencoded and gzipped, 1 LaTex text file and 9 PS files for
figure
Recurrence of fidelity in near integrable systems
Within the framework of simple perturbation theory, recurrence time of
quantum fidelity is related to the period of the classical motion. This
indicates the possibility of recurrence in near integrable systems. We have
studied such possibility in detail with the kicked rotor as an example. In
accordance with the correspondence principle, recurrence is observed when the
underlying classical dynamics is well approximated by the harmonic oscillator.
Quantum revivals of fidelity is noted in the interior of resonances, while
classical-quantum correspondence of fidelity is seen to be very short for
states initially in the rotational KAM region.Comment: 13 pages, 6 figure
Entanglement production in Quantized Chaotic Systems
Quantum chaos is a subject whose major goal is to identify and to investigate
different quantum signatures of classical chaos. Here we study entanglement
production in coupled chaotic systems as a possible quantum indicator of
classical chaos. We use coupled kicked tops as a model for our extensive
numerical studies. We find that, in general, presence of chaos in the system
produces more entanglement. However, coupling strength between two subsystems
is also very important parameter for the entanglement production. Here we show
how chaos can lead to large entanglement which is universal and describable by
random matrix theory (RMT). We also explain entanglement production in coupled
strongly chaotic systems by deriving a formula based on RMT. This formula is
valid for arbitrary coupling strengths, as well as for sufficiently long time.
Here we investigate also the effect of chaos on the entanglement production for
the mixed initial state. We find that many properties of the mixed state
entanglement production are qualitatively similar to the pure state
entanglement production. We however still lack an analytical understanding of
the mixed state entanglement production in chaotic systems.Comment: 16 pages, 5 figures. To appear in Pramana:Journal of Physic
Entanglement of a microcanonical ensemble
We replace time-averaged entanglement by ensemble-averaged entanglement and
derive a simple expression for the latter. We show how to calculate the
ensemble average for a two-spin system and for the Jaynes-Cummings model. In
both cases the time-dependent entanglement is known as well so that one can
verify that the time average coincides with the ensemble average.Comment: 10 page
Semiclassical properties and chaos degree for the quantum baker's map
We study the chaotic behaviour and the quantum-classical correspondence for
the baker's map. Correspondence between quantum and classical expectation
values is investigated and it is numerically shown that it is lost at the
logarithmic timescale. The quantum chaos degree is computed and it is
demonstrated that it describes the chaotic features of the model. The
correspondence between classical and quantum chaos degrees is considered.Comment: 30 pages, 4 figures, accepted for publication in J. Math. Phy
Barnett-Pegg formalism of angle operators, revivals, and flux lines
We use the Barnett-Pegg formalism of angle operators to study a rotating
particle with and without a flux line. Requiring a finite dimensional version
of the Wigner function to be well defined we find a natural time quantization
that leads to classical maps from which the arithmetical basis of quantum
revivals is seen. The flux line, that fundamentally alters the quantum
statistics, forces this time quantum to be increased by a factor of a winding
number and determines the homotopy class of the path. The value of the flux is
restricted to the rational numbers, a feature that persists in the infinite
dimensional limit.Comment: 5 pages, 0 figures, Revte
Neurology training around the world
Lancet Neurol. 2003 Sep;2(9):572-9.
Neurology training around the world.
Hooker J, Eccher M, Lakshminarayan K, Souza-Lima FC, Rejdak K, Kwiecinski H, Corea F, Lima JM.
The National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, UK.
Comment in:
Lancet Neurol. 2003 Oct;2(10):594; discussion 594
Entangling power of quantized chaotic systems
We study the quantum entanglement caused by unitary operators that have
classical limits that can range from the near integrable to the completely
chaotic. Entanglement in the eigenstates and time-evolving arbitrary states is
studied through the von Neumann entropy of the reduced density matrices. We
demonstrate that classical chaos can lead to substantially enhanced
entanglement. Conversely, entanglement provides a novel and useful
characterization of quantum states in higher dimensional chaotic or complex
systems. Information about eigenfunction localization is stored in a graded
manner in the Schmidt vectors, and the principal Schmidt vectors can be scarred
by the projections of classical periodic orbits onto subspaces. The eigenvalues
of the reduced density matrices are sensitive to the degree of wavefunction
localization, and are roughly exponentially arranged. We also point out the
analogy with decoherence, as reduced density matrices corresponding to
subsystems of fully chaotic systems are diagonally dominant.Comment: 21 pages including 9 figs. (revtex
A Uniform Approximation for the Fidelity in Chaotic Systems
In quantum/wave systems with chaotic classical analogs, wavefunctions evolve
in highly complex, yet deterministic ways. A slight perturbation of the system,
though, will cause the evolution to diverge from its original behavior
increasingly with time. This divergence can be measured by the fidelity, which
is defined as the squared overlap of the two time evolved states. For chaotic
systems, two main decay regimes of either Gaussian or exponential behavior have
been identified depending on the strength of the perturbation. For perturbation
strengths intermediate between the two regimes, the fidelity displays both
forms of decay. By applying a complementary combination of random matrix and
semiclassical theory, a uniform approximation can be derived that covers the
full range of perturbation strengths. The time dependence is entirely fixed by
the density of states and the so-called transition parameter, which can be
related to the phase space volume of the system and the classical action
diffusion constant, respectively. The accuracy of the approximations are
illustrated with the standard map.Comment: 16 pages, 4 figures, accepted in J. Phys. A, special edition on
Random Matrix Theor
- âŠ