1,588 research outputs found

    On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schr\"odinger equations

    Get PDF
    Using a moving space curve formalism, geometrical as well as gauge equivalence between a (2+1) dimensional spin equation (M-I equation) and the (2+1) dimensional nonlinear Schr\"odinger equation (NLSE) originally discovered by Calogero, discussed then by Zakharov and recently rederived by Strachan, have been estabilished. A compatible set of three linear equations are obtained and integrals of motion are discussed. Through stereographic projection, the M-I equation has been bilinearized and different types of solutions such as line and curved solitons, breaking solitons, induced dromions, and domain wall type solutions are presented. Breaking soliton solutions of (2+1) dimensional NLSE have also been reported. Generalizations of the above spin equation are discussed.Comment: 32 pages, no figures, accepted for publication in J. Math. Phy

    Integrable (2+1)-Dimensional Spin Models with Self-Consistent Potentials

    Full text link
    Integrable spin systems possess interesting geometrical and gauge invariance properties and have important applications in applied magnetism and nanophysics. They are also intimately connected to the nonlinear Schr\"odinger family of equations. In this paper, we identify three different integrable spin systems in (2 + 1) dimensions by introducing the interaction of the spin field with more than one scalar potential, or vector potential, or both. We also obtain the associated Lax pairs. We discuss various interesting reductions in (2 + 1) and (1 + 1) dimensions. We also deduce the equivalent nonlinear Schr\"odinger family of equations, including the (2 + 1)-dimensional version of nonlinear Schr\"odinger--Hirota--Maxwell--Bloch equations, along with their Lax pairs.Comment: 21 page
    • …
    corecore