53 research outputs found

    Plasma and Muscle Myostatin in Relation to Type 2 Diabetes

    Get PDF
    OBJECTIVE: Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy controls. DESIGN: 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age, gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin and expression of myostatin in skeletal muscle. RESULTS: Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P<0.001), plasma insulin (68.2 versus 47.2 pmol/L, P<0.002) and HOMA2-IR (1.6 versus 0.9, P<0.0001) when compared to controls. Patients with type 2 diabetes had 1.4 (P<0.01) higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin mRNA correlated with HOMA2-IR (rβ€Š=β€Š0.30, P<0.01), plasma IL-6 (rβ€Š=β€Š0.34, P<0.05) and VO2 max (rβ€Š=β€Š-0.26, P<0.05), however, no correlations were observed in patients with type 2 diabetes. CONCLUSIONS: This study supports the idea that myostatin may have a negative effect on metabolism. However, the metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes

    A comprehensive situation assessment of injection practices in primary health care hospitals in Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding injection practices is crucial for evidence-based development of intervention initiatives. This study explored the extent of injection use and injection safety practices in primary care hospitals in Bangladesh.</p> <p>Methods</p> <p>The study employed both quantitative and qualitative research methods. The methods used were - a retrospective audit of prescriptions (n = 4320), focus group discussions (six with 43 participants), in-depth interviews (n = 38) with a range service providers, and systematic observation of the activities of injection providers (n = 120), waste handlers (n = 48) and hospital facilities (n = 24). Quantitative and qualitative data were assessed with statistical and thematic analysis, respectively, and then combined.</p> <p>Results</p> <p>As many as 78% of our study sample (n = 4230) received an injection. The most commonly prescribed injections (n = 3354) including antibiotics (78.3%), IV fluids (38.6%), analgesics/pain killers (29.4%), vitamins (26.7%), and anti-histamines (18.5%). Further, 43.7% (n = 1145) of the prescribed antibiotics (n = 2626) were given to treat diarrhea and 42.3% (n = 600) of IV fluids (n = 1295) were used to manage general weakness conditions. Nearly one-third (29.8%; n = 36/120) of injection providers reported needle-stick injuries in the last 6 months with highest incidences in Rajshahi division followed by Dhaka division. Disposal of injection needles, syringes and other materials was not done properly in 83.5% (n = 20/24) of the facilities. Health providers' safety concerns were not addressed properly; only 23% (n = 28/120) of the health providers and 4.2% (n = 2/48) of the waste handlers were fully immunized against Hepatitis B virus. Moreover, 73% (n = 87/120) of the injection providers and 90% (n = 43/48) of the waste handlers were not trained in injection safety practices and infection prevention. Qualitative data further confirmed that both providers and patients preferred injections, believing that they provide quick relief. The doctors' perceived injection use as their prescribing norm that enabled them to prove their professional credibility and to remain popular in a competitive health care market. Additionally, persistent pressure from hospital administration to use up injections before their expiry dates also influenced doctors to prescribe injections regardless of actual indications.</p> <p>Conclusions</p> <p>As far as the patients and providers' safety is concerned, this study demonstrated a need for further research exploring the dynamics of injection use and safety in Bangladesh. In a context where a high level of injection use and unsafe practices were reported, immediate prevention initiatives need to be operated through continued intervention efforts and health providers' training in primary care hospitals in Bangladesh.</p

    Differential Expressions of Adhesive Molecules and Proteases Define Mechanisms of Ovarian Tumor Cell Matrix Penetration/Invasion

    Get PDF
    Epithelial ovarian cancer is an aggressive and deadly disease and understanding its invasion mechanisms is critical for its treatment. We sought to study the penetration/invasion of ovarian tumor cells into extracellular matrices (ECMs) using a fibroblast-derived three-dimensional (3D) culture model and time-lapse and confocal imaging. Twelve ovarian tumor cells were evaluated and classified into distinct groups based on their ECM remodeling phenotypes; those that degraded the ECM (represented by OVCAR5 cells) and those that did not (represented by OVCAR10 cells). Cells exhibiting a distinct ECM modifying behavior were also segregated by epithelial- or mesenchymal-like phenotypes and uPA or MMP-2/MMP-9 expression. The cells, which presented epithelial-like phenotypes, penetrated the ECM using proteases and maintained intact cell-cell interactions, while cells exhibiting mesenchymal phenotypes modified the matrices via Rho-associated serine/threonine kinase (ROCK) in the absence of apparent cell-cell interactions. Overall, this study demonstrates that different mechanisms of modifying matrices by ovarian tumor cells may reflect heterogeneity among tumors and emphasize the need to systematically assess these mechanisms to better design effective therapies

    Individual and combined soy isoflavones exert differential effects on metastatic cancer progression

    Get PDF
    To investigate the effects soy isoflavones in established cancers, the role of genistein, daidzein, and combined soy isoflavones was studied on progression of subcutaneous tumors in nude mice created from green fluorescent protein (GFP) tagged-MDA-MB-435 cells. Following tumor establishment, mice were gavaged with vehicle or genistein or daidzein at 10Β mg/kg body weight (BW) or a combination of genistein (10Β mg/kgΒ BW), daidzein (9Β mg/kgΒ BW), and glycitein (1Β mg/kgΒ BW) three times per week. Tumor progression was quantified by whole body fluorescence image analysis followed by microscopic image analysis of excised organs for metastases. Results show that daidzein increased while genistein decreased mammary tumor growth by 38 and 33% respectively, compared to vehicle. Daidzein increased lung and heart metastases while genistein decreased bone and liver metastases. Combined soy isoflavones did not affect primary tumor growth but increased metastasis to all organs tested, which include lung, liver, heart, kidney, and bones. Phosphoinositide-3-kinase (PI3-K) pathway real time PCR array analysis and western blotting of excised tumors demonstrate that genistein significantly downregulated 10/84 genes, including the Rho GTPases RHOA, RAC1, and CDC42 and their effector PAK1. Daidzein significantly upregulated 9/84 genes that regulate proliferation and protein synthesis including EIF4G1, eIF4E, and survivin protein levels. Combined soy treatment significantly increased gene and protein levels of EIF4E and decreased TIRAP gene expression. Differential regulation of Rho GTPases, initiation factors, and survivin may account for the disparate responses of breast cancers to genistein and daidzein diets. This study indicates that consumption of soy foods may increase metastasis

    Inhibition of cancer cell invasion and metastasis by genistein

    Get PDF
    Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein’s antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-Ξ² signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis
    • …
    corecore