4 research outputs found

    Mechanical and tribological properties of AA7075-T6 metal matrix composite reinforced with ceramic particles and aloevera ash via Friction stir processing

    No full text
    Mechanical and wear properties of AA7075-T6 reinforced with SiC and Aloevera ash, fabricated using Friction stir processing (FSP) are investigated in this study. Due to less density, easy availability, and cost-effectiveness, aloevera ash is considered as one of the reinforcements. FSP is done using a square tool pin profile, at different tool rotational speeds. To study wear behaviour, pin on disc test is carried out on High Temperature Rotary Tribometer at 20N, 30N and 40N applied load. Wear increases on increasing the applied load and at 20N load Al+SiC/Aloevera ash composite, processed at 600 tool rpm gave the best results due to the formation of oxide tribolayer. At 30N and 40N applied load Al+SiC composite, processed at 900 tool rpm showed the least wear because of proper scattering of ceramic particles due to high tool rotational speed. Coefficient of friction increases on increasing the applied load and all fabricated composite samples showed a lesser coefficient of friction than the base metal. Microhardness, ductility and Ultimate tensile strength increases on the addition of reinforcement and had a direct relation with tool rpm. Wear morphology was analysed using Scanning Electron Microscope (SEM). Energy Dispersive Spectroscopy (EDS) analysis after wear shows the presence of C, Fe, O, Mg, Zn, Si, Al elements and confirms the formation of an oxide layer which is responsible for decreasing wear loss

    Mechanical and wear performance of Al/SiC surface composite prepared through friction stir processing

    No full text
    In the present research work, AA7075 composite reinforced with silicon carbide particles has been fabricated using Friction stir processing (FSP). The silicon carbide particles having a size of 40 μ m were placed in grooves of length 160 mm, width 2 mm, depth 3.5 mm, that were generated on the AA7075 plate. The square pin tool is utilized for fabricating the composite at two different rotational speed i.e. 700 and 1000 rpm. Effect of processing, particle addition and tool rotational speed is analyzed on mechanical and wear properties of the material. On friction stir processing the microhardness value and elongation of the material increased. Reinforcement addition contributed to decrease in ductility and tensile strength while on the contrary microhardness and wear resistance of the material improved. Tool rotational speed showed a direct relation with the tested mechanical and wear properties. Adhesive wear was the prominent wear mechanism and Fe layer formation was observed on the worn surface, contributing to increased wear resistance. These fabricated composites can find vast application in industries like automotive, defence and aerospace

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background: Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods: WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings: Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0-4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2-6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation: In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. Funding: European Society of Intensive Care Medicine, European Respiratory Society

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0–4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2–6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates
    corecore