2 research outputs found

    Study of the atmospheric conditions at Cerro Armazones using astronomical data

    Full text link
    Aims: We studied the precipitable water vapour (PWV) content near Cerro Armazones and discuss the potential use of our technique of modelling the telluric absorbtion lines for the investigation of other molecular layers. The site is designated for the European Extremely Large Telescope (E-ELT) and the nearby planned site for the Cherenkov Telescope Array (CTA). Methods: Spectroscopic data from the Bochum Echelle Spectroscopic Observer (BESO) instrument were investigated by using line-by-line radiative transfer model (LBLRTM) radiative transfer models for the Earths atmosphere with the telluric absorption correction tool molecfit. All observations from the archive in the period from December 2008 to the end of 2014 were investigated. The dataset completely covers the El Nino event registered in the period 2009-2010. Models of the 3D Global Data Assimilation System (GDAS) were used for further comparison. Moreover, for those days with coincidence of data from a similar study with VLT/X-shooter and microwave radiometer LHATPRO data at Cerro Paranal, a direct comparison is presented. Results: This analysis shows that the site has systematically lower PWV values, even after accounting for the decrease in PWV expected from the higher altitude of the site with respect to Cerro Paranal, using the average atmosphere found with radiosondes. We found that GDAS data are not a suitable method for predicting of local atmospheric conditions - they usually systematically overestimate the PWV values. Due to the large sample, we were furthermore able to characterize the site with respect to symmetry across the sky and variation with the years and within the seasons. This kind of technique of studying the atmospheric conditions is shown to be a promising step into a possible monitoring equipment for CTA.Comment: Accepted for publication in Astronomy and Astrophysics, 7 pages, 9 figure

    Spectral and morphological analysis of the remnant of Supernova 1987A with ALMA & ATCA

    Get PDF
    We present a comprehensive spectral and morphological analysis of the remnant of Supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ\lambda 3.2 mm to 450 μ\mum), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (Sνν0.73S_{\nu}\propto\nu^{-0.73}) and the thermal component originating from dust grains at T22T\sim22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localised west of the SN site, as the spectral analysis yields 0.4α0.1-0.4\lesssim\alpha\lesssim-0.1 across the western regions, with α0\alpha\sim0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.Comment: ApJ accepted. 21 pages, emulateapj. References update
    corecore