11 research outputs found

    2D- and 3D-QSRR Studies of Linear Retention Indices for Volatile Alkylated Phenols

    Get PDF
    In this study, 29 volatile alkylated phenols were subjected to a quantitative structure retention relationships (QSRR) studies; we have developed two- and three-dimensional quantitative structure retention relationships (2D- and 3D-QSRR) for this series; and these molecules were subjected to a 2D-QSRR analysis for their retention property using stepwise multiple linear regression (MLR) and 3D-QSRR analysis using partial least squares (PLS). The 28 descriptors are calculated for the 29 molecules using the ChemOffice and ChemSketch software to construct 2D-QSRR model. The 3D-QSRR models were constructed using comparative molecular field analysis (CoMFA) method. The models were used to predict the linear retention indices of the test set compounds, and agreement between the experimental and predicted values was verified. The statistical results indicate that the predicted values are in good agreement with the experimental results (r2 = 0.980; r2CV = 0.977 and r2 = 0.998; r2CV = 0.959 for MLR and CoMFA methods, respectively). To validate the predictive power of the resulting models, external validation multiple correlation coefficient was calculated; in addition to a performance prediction power, this coefficient has a favorable estimation of stability for the two methods (rtest = 0.938 and rtest = 0.955 for MLR and CoMFA methods, respectively)

    3D-QSAR Study of the Chalcone Derivatives as Anticancer Agents

    No full text
    For their biological properties and particularly for their anticancer activities, chalcones are widely studied. In this work, we have submitted diverse sets of chalcone derivatives to the 3D-QSAR (3-dimensional quantitative structural-activity relationship) to study their anticancer activities against HTC116 (human colon cancer), relying on the 3-dimensional descriptors: steric and electrostatic descriptors for the CoMFA (comparative molecular field analysis) method and steric, electrostatic, hydrophobic, H-bond donor, and H-bond acceptor descriptors for the CoMSIA method. CoMFA as well as the CoMSIA model have encouraging values of the cross-validation coefficient (Q2) of 0.608 and 0.806 and conventional correlation coefficient (R2) of 0.960 and 0.934, respectively. Furthermore, values of R2test have been obtained as 0.75 and 0.90, respectively. Besides, y-randomization test was also performed to validate our 3D-QSAR models. Based on these satisfactory results, ten new compounds have been designed and predicted by in silico ADMET method. This study could expand the understanding of chalcone derivatives as anticancer agents and would be of great help in lead optimization for early drug discovery of highly potent anticancer activity

    QSPR study of the retention/release property of odorant molecules in pectin gels using statistical methods

    No full text
    The ACD/ChemSketch, MarvinSketch, and ChemOffice programmes were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters). The best descriptors were selected to establish the Quantitative Structure-Property Relationship (QSPR) of the retention/release property of odorant molecules in pectin gels using Principal Components Analysis (PCA), Multiple Linear Regression (MLR), Multiple Non-linear Regression (MNLR) and Artificial Neural Network (ANN) methods We propose a quantitative model based on these analyses. PCA has been used to select descriptors that exhibit high correlation with the retention/release property. The MLR method yielded correlation coefficients of 0.960 and 0.958 for PG-0.4 (pectin concentration: 0.4% w/w) and PG-0.8 (pectin concentration: 0.8% w/w) media, respectively. Internal and external validations were used to determine the statistical quality of the QSPR of the two MLR models. The MNLR method, considering the relevant descriptors obtained from the MLR, yielded correlation coefficients of 0.978 and 0.975 for PG-0.4 and PG-0.8 media, respectively. The applicability domain of MLR models was investigated using simple and leverage approaches to detect outliers and outside compounds. The effects of different descriptors on the retention/release property are described, and these descriptors were used to study and design new compounds with higher and lower values of the property than the existing ones. Keywords: Odorant Molecules, Retention/Release, Pectin Gels, Quantitative Structure Property Relationship, Multiple Linear Regression, Artificial Neural Networ

    QSPR Study of the Retention/release Property of Odorant Molecules in Water Using Statistical Methods

    Get PDF
    An integrated approach physicochemistry and structures property relationships has been carried out to study the odorant molecules retention/release phenomenon in the water. This study aimed to identify the molecular properties (molecular descriptors) that govern this phenomenon assuming that modifying the structure leads automatically to a change in the retention/release property of odorant molecules. ACD/ChemSketch, MarvinSketch, and ChemOffice programs were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters). A total of 37 molecules (2/3 of the data set) were placed in the training set to build the QSPR models, whereas the remaining, 14 molecules (1/3 of the data set) constitute the test set. The best descriptors were selected to establish the quantitative structure property relationship (QSPR) of the retention/release property of odorant molecules in water using multiple linear regression (MLR), multiple non-linear regression (MNLR) and an artificial neural network (ANN) methods. We propose a quantitative model according to these analyses. The models were used to predict the retention/release property of the test set compounds, and agreement between the experimental and predicted values was verified. The descriptors showed by QSPR study are used for study and designing of new compounds. The statistical results indicate that the predicted values are in good agreement with the experimental results. To validate the predictive power of the resulting models, external validation multiple correlation coefficient was calculated and has both in addition to a performant prediction power, a favorable estimation of stability. DOI: http://dx.doi.org/10.17807/orbital.v9i4.978 </p
    corecore