3,744 research outputs found

    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter vacua in arbitrary dimension

    Full text link
    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter family of vacua are given, first in spacetime (generalizing a result due to Israel) and then for all dimensions DD (assuming a D−2D-2 sphere). It is shown that these coordinates offer important advantages over the well known Kruskal - Szekeres procedure.Comment: 12 pages revtex4 5 figures in color. Higher resolution version at http://www.astro.queensu.ca/~lake/regularcoordinates.pd

    Globular Cluster Formation in the Virgo Cluster

    Full text link
    Metal poor globular clusters (MPGCs) are a unique probe of the early universe, in particular the reionization era. Systems of globular clusters in galaxy clusters are particularly interesting as it is in the progenitors of galaxy clusters that the earliest reionizing sources first formed. Although the exact physical origin of globular clusters is still debated, it is generally admitted that globular clusters form in early, rare dark matter peaks (Moore et al. 2006; Boley et al. 2009). We provide a fully numerical analysis of the Virgo cluster globular cluster system by identifying the present day globular cluster system with exactly such early, rare dark matter peaks. A popular hypothesis is that that the observed truncation of blue metal poor globular cluster formation is due to reionization (Spitler et al. 2012; Boley et al. 2009; Brodie & Strader 2006); adopting this view, constraining the formation epoch of MPGCs provides a complementary constraint on the epoch of reionization. By analyzing both the line of sight velocity dispersion and the surface density distribution of the present day distribution we are able to constrain the redshift and mass of the dark matter peaks. We find and quantify a dependence on the chosen line of sight of these quantities, whose strength varies with redshift, and coupled with star formation efficiency arguments find a best fitting formation mass and redshift of ≃5×108M⊙\simeq 5 \times 10^8 \rm{M}_\odot and z≃9z\simeq 9. We predict ≃300\simeq 300 intracluster MPGCs in the Virgo cluster. Our results confirm the techniques pioneered by Moore et al. (2006) when applied to the the Virgo cluster and extend and refine the analytic results of Spitler et al. (2012) numerically.Comment: 13 Pages, 13 Figures, submitted to MNRA

    Static Ricci-flat 5-manifolds admitting the 2-sphere

    Get PDF
    We examine, in a purely geometrical way, static Ricci-flat 5-manifolds admitting the 2-sphere and an additional hypersurface-orthogonal Killing vector. These are widely studied in the literature, from different physical approaches, and known variously as the Kramer - Gross - Perry - Davidson - Owen solutions. The 2-fold infinity of cases that result are studied by way of new coordinates (which are in most cases global) and the cases likely to be of interest in any physical approach are distinguished on the basis of the nakedness and geometrical mass of their associated singularities. It is argued that the entire class of solutions has to be considered unstable about the exceptional solutions: the black string and soliton cases. Any physical theory which admits the non-exceptional solutions as the external vacuua of a collapsing object has to accept the possibility of collapse to zero volume leaving behind the weakest possible, albeit naked, geometrical singularities at the origin.Finally, it is pointed out that these types of solutions generalize, in a straightforward way, to higher dimensions.Comment: Generalize, in a straightforward way, to higher dimension

    Dark Matter Substructure in Galactic Halos

    Full text link
    We use numerical simulations to examine the substructure within galactic and cluster mass halos that form within a hierarchical universe. Clusters are easily reproduced with a steep mass spectrum of thousands of substructure clumps that closely matches observations. However, the survival of dark matter substructure also occurs on galactic scales, leading to the remarkable result that galaxy halos appear as scaled versions of galaxy clusters. The model predicts that the virialised extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than Draco and Ursa-Minor i.e. bound masses > 10^8Mo and tidally limited sizes > kpc. The substructure clumps are on orbits that take a large fraction of them through the stellar disk leading to significant resonant and impulsive heating. Their abundance and singular density profiles has important implications for the existence of old thin disks, cold stellar streams, gravitational lensing and indirect/direct detection experiments.Comment: Astrophysical Journal Letters. 4 pages, latex. Simulation images and movies at http://star-www.dur.ac.uk:80/~moore

    Resolving the Structure of Cold Dark Matter Halos

    Get PDF
    We examine the effects of mass resolution and force softening on the density profiles of cold dark matter halos that form within cosmological N-body simulations. As we increase the mass and force resolution, we resolve progenitor halos that collapse at higher redshifts and have very high densities. At our highest resolution we have nearly 3 million particles within the virial radius, several orders of magnitude more than previously used and we can resolve more than one thousand surviving dark matter halos within this single virialised system. The halo profiles become steeper in the central regions and we may not have achieved convergence to a unique slope within the inner 10% of the virialised region. Results from two very high resolution halo simulations yield steep inner density profiles, ρ(r)∌r−1.4\rho(r)\sim r^{-1.4}. The abundance and properties of arcs formed within this potential will be different from calculations based on lower resolution simulations. The kinematics of disks within such a steep potential may prove problematic for the CDM model when compared with the observed properties of halos on galactic scales.Comment: Final version, to be published in the ApJLetter

    Six Peaks Visible in the Redshift Distribution of 46,400 SDSS Quasars Agree with the Preferred Redshifts Predicted by the Decreasing Intrinsic Redshift Model

    Full text link
    The redshift distribution of all 46,400 quasars in the Sloan Digital Sky Survey (SDSS) Quasar Catalog III, Third Data Release, is examined. Six Peaks that fall within the redshift window below z = 4, are visible. Their positions agree with the preferred redshift values predicted by the decreasing intrinsic redshift (DIR) model, even though this model was derived using completely independent evidence. A power spectrum analysis of the full dataset confirms the presence of a single, significant power peak at the expected redshift period. Power peaks with the predicted period are also obtained when the upper and lower halves of the redshift distribution are examined separately. The periodicity detected is in linear z, as opposed to log(1+z). Because the peaks in the SDSS quasar redshift distribution agree well with the preferred redshifts predicted by the intrinsic redshift relation, we conclude that this relation, and the peaks in the redshift distribution, likely both have the same origin, and this may be intrinsic redshifts, or a common selection effect. However, because of the way the intrinsic redshift relation was determined it seems unlikely that one selection effect could have been responsible for both.Comment: 12 pages, 12 figure, accepted for publication in the Astrophysical Journa

    The flatness problem and Λ\Lambda

    Full text link
    By way of a complete integration of the Friedmann equations, in terms of observables, it is shown that for the cosmological constant Λ>0\Lambda > 0 there exist non-flat FLRW models for which the total density parameter Ω\Omega remains ∌1\sim 1 throughout the entire history of the universe. Further, it is shown that in a precise quantitative sense these models are not finely tuned. When observations are brought to bear on the theory, and in particular the WMAP observations, they confirm that we live in just such a universe. The conclusion holds when the classical notion of Λ\Lambda is extended to dark energy.Comment: Final form to appear in Physical Review Letters. Further information at http://grtensor.org/Robertson

    Nutritional Management Post-AI to Enhance Pregnancy Outcomes

    Get PDF
    Effective replacement heifer development is a critical segment of the integrated management program in an efficient beef cow production system. The most critical factor determining the success of any heifer development program is nutrition. Most efforts are concentrated in providing the right amount and quality of feed to achieve gains from 1.5 to 2.0 lb/day, so heifers can reach 65% of their mature BW by the day of breeding. Approximately 80% of the U.S. cow-herds are spring calving, which means that producers utilizing estrous synchronization and AI are keeping their heifers in a feedlot environment until heifers are inseminated. Immediately following AI, heifers are typically moved to pasture. It is known that maternal recognition of pregnancy takes place around d 15 - 17 post-insemination and that transporting animals near this time compromises conception rates. However, moving heifers within the first 5 days post-insemination does not cause this reduction. Although, research suggests that conception rates are compromised when heifers are placed on early growth pasture forages. We hypothesized that feeding this high moisture pasture forage at turnout is limiting DMI which in turn causes a temporary energy deficiency that results in temporary heifer weight loss during the critical stages of early embryonic development and maternal recognition of pregnancy. Therefore, it is beneficial to ensure heifers maintain the same plane of nutrition after breeding, at least until day 25 when the embryo should be completely attached to the uterus. If this is true, maintaining a positive plane of nutrition on heifers after breeding will increase 1st service conception rates, improving herd fertility and longevity

    The descendents of Lyman Break Galaxies in galaxy clusters: spatial distribution and orbital properties

    Get PDF
    We combine semi-analytical methods with a ultra-high resolution simulation of a galaxy cluster (of mass 2.3 10^14h-1Msolar, and 4 10^6 particles within its virial radius) formed in a standard CDM universe to study the spatial distribution and orbital properties of the present-day descendents of Lyman Break Galaxies (LBGs). At the present time only five (out of 12) of halos containing LBGs survive as separate entities inside the cluster virial radius. Their circular velocities are in the range 200 - 550 km/sec. Seven halos merged together to form the central object at the very center of the cluster. Using semi-analytical modeling of galaxy evolution we show that descendents of halos containing LBGs now host giant elliptical galaxies. Galaxy orbits are radial, with a pericenter to apocenter ratio of about 1:5. The orbital eccentricities of LBGs descendents are statistically indistinguishable from those of the average galaxy population inside the cluster, suggesting that the orbits of these galaxies are not significantly affected by dynamical friction decay after the formation of the cluster's main body. In this cluster, possibly due to its early formation time, the descendents of LBGs are contained within the central 60% of the cluster virial radius and have an orbital velocity dispersion lower than the global galaxy population, originating a mild luminosity segregation for the brightest cluster members. Mass estimates based only on LBGs descendents (especially including the central cD) reflect this bias in space and velocity and underestimate the total mass of this well virialized cluster by up to a factor of two compared to estimates using at least 20 cluster members.Comment: 6 Pages, 2 Postscript figures. Submitted to Ap
    • 

    corecore