3,862 research outputs found

    Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions

    Full text link
    We experimentally investigate and utilize electrothermal feedback in a microwave nanobolometer based on a normal-metal (\mbox{Au}_{x}\mbox{Pd}_{1-x}) nanowire with proximity-induced superconductivity. The feedback couples the temperature and the electrical degrees of freedom in the nanowire, which both absorbs the incoming microwave radiation, and transduces the temperature change into a radio-frequency electrical signal. We tune the feedback in situ and access both positive and negative feedback regimes with rich nonlinear dynamics. In particular, strong positive feedback leads to the emergence of two metastable electron temperature states in the millikelvin range. We use these states for efficient threshold detection of coherent 8.4 GHz microwave pulses containing approximately 200 photons on average, corresponding to 1.1 \mbox{ zJ} \approx 7.0 \mbox{ meV} of energy

    A study of the feasibility of directly applying gas generator systems to space shuttle mechanical functions

    Get PDF
    This study examined the current status and potential application of pyrotechnic gas generators and energy convertors for the space shuttle program. While most pyrotechnic devices utilize some form of linear actuation, only limited use of rotary actuators has been observed. This latter form of energy conversion, using a vane-type actuator as optimum, offers considerable potential in the area of servo, as well as non-servo systems, and capitalizes on a means of providing prolonged operating times. Pyrotechnic devices can often be shown to provide the optimum means of attaining a truly redundant back-up to a primary, non-pyrotechnic system

    Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health

    Get PDF
    There is growing public concern in Zimbabwe over the illegal cultivation of vegetables on soils amended with sewage sludge or irrigated with admixtures of sewage and sewage sludge. Excessive accumulation of heavy metals in agricultural soils may not only result in environmental contamination, but lead to elevated heavy metal uptake by crops, which may affect food quality and safety. The work reported here studied heavy metal concentrations in crops irrigated with sewage sludge and sewage/sewage sludge admixtures at Firle Municipal Farm in Harare. The crops analysed in this study are heavily contaminated with the four regulated elements Cd, Cu, Pb and Zn. This contamination is at its highest in two of the staple dietary crops maize and tsunga. Tsunga leaves contained 3.68 mg kg-1 Cd, over 18 times the permissible level by the EU standards (0.2 mg kg-1); Cu concentrations were 111 mg kg-1, 5 times the EU Standard (20 mg kg-1); concentrations of Pb were 6.77 mg kg-1, over 22 times the permissible levels allowed by both EU standards and UK guidelines (0.3 mg kg-1); Zn concentrations were 221 mg kg-1, over 4 times the guideline value (50 mg kg-1). The other plants (beans, maize, peppers and sugarcane) also contained concentrations of heavy metals above the permissible levels. Furthermore the concentrations observed in this study were higher than those reported by other workers who have examined vegetation from other contaminated sites. This study highlights the potential risks involved in the cultivation and consumption of vegetables on plots irrigated with sewage sludge, a practice which may place at risk the health of the urban population who consume these vegetables

    Microscopic theory of quantum-transport phenomena in mesoscopic systems: A Monte Carlo approach

    Get PDF
    A theoretical investigation of quantum-transport phenomena in mesoscopic systems is presented. In particular, a generalization to ``open systems'' of the well-known semiconductor Bloch equations is proposed. The presence of spatial boundary conditions manifest itself through self-energy corrections and additional source terms in the kinetic equations, whose form is suitable for a solution via a generalized Monte Carlo simulation. The proposed approach is applied to the study of quantum-transport phenomena in double-barrier structures as well as in superlattices, showing a strong interplay between phase coherence and relaxation.Comment: to appear in Phys. Rev. Let

    Optical Spectroscopic Survey of High-latitude WISE-selected Sources

    Get PDF
    We report on the results of an optical spectroscopic survey at high Galactic latitude (|b| ≥ 30°) of a sample of WISE-selected targets, grouped by WISE W1 (λ_eff = 3.4 μm) flux, which we use to characterize the sources WISE detected. We observed 762 targets in 10 disjoint fields centered on ultraluminous infrared galaxy candidates using DEIMOS on Keck II. We find 0.30 ± 0.02 galaxies arcmin–2 with a median redshift of z = 0.33 ± 0.01 for the sample with W1 ≥ 120 μJy. The foreground stellar densities in our survey range from 0.23 ± 0.07 arcmin–2 to 1.1 ± 0.1 arcmin–2 for the same sample. We obtained spectra that produced science grade redshifts for ≥90% of our targets for sources with W1 flux ≥120 μJy that also had an i-band flux gsim 18 μJy. We used this for targeting very preliminary data reductions available to the team in 2010 August. Our results therefore present a conservative estimate of what is possible to achieve using WISE's Preliminary Data Release for the study of field galaxies
    • …
    corecore