128 research outputs found

    Synergistic effect on cardiac energetics by targeting the creatine kinase system: in vivo application of high-resolution 31P-CMRS in the mouse

    Get PDF
    Background Phosphorus cardiovascular magnetic resonance spectroscopy (31P-CMRS) has emerged as an important tool for the preclinical assessment of myocardial energetics in vivo. However, the high rate and diminutive size of the mouse heart is a challenge, resulting in low resolution and poor signal-to-noise. Here we describe a refined high-resolution 31P-CMRS technique and apply it to a novel double transgenic mouse (dTg) with elevated myocardial creatine and creatine kinase (CK) activity. We hypothesised a synergistic effect to augment energetic status, evidenced by an increase in the ratio of phosphocreatine-to-adenosine-triphosphate (PCr/ATP). Methods and results Single transgenic Creatine Transporter overexpressing (CrT-OE, n = 7) and dTg mice (CrT-OE and CK, n = 6) mice were anaesthetised with isoflurane to acquire 31P-CMRS measurements of the left ventricle (LV) utilising a two-dimensional (2D), threefold under-sampled density-weighted chemical shift imaging (2D-CSI) sequence, which provided high-resolution data with nominal voxel size of 8.5 µl within 70 min. (1H-) cine-CMR data for cardiac function assessment were obtained in the same imaging session. Under a separate examination, mice received invasive haemodynamic assessment, after which tissue was collected for biochemical analysis. Myocardial creatine levels were elevated in all mouse hearts, but only dTg exhibited significantly elevated CK activity, resulting in a 51% higher PCr/ATP ratio in heart (3.01 ± 0.96 vs. 2.04 ± 0.57—mean ± SD; dTg vs. CrT-OE), that was absent from adjacent skeletal muscle. No significant differences were observed for any parameters of LV structure and function, confirming that augmentation of CK activity does not have unforeseen consequences for the heart. Conclusions We have developed an improved 31P-CMRS methodology for the in vivo assessment of energetics in the murine heart which enabled high-resolution imaging within acceptable scan times. Mice over-expressing both creatine and CK in the heart exhibited a synergistic elevation in PCr/ATP that can now be tested for therapeutic potential in models of chronic heart failure

    Homoarginine and creatine deficiency do not exacerbate murine ischaemic heart failure

    Get PDF
    Aims: Low levels of homoarginine and creatine are associated with heart failure severity in humans, but it is unclear to what extent they contribute to pathophysiology. Both are synthesized via L-arginine:glycine amidinotransferase (AGAT), such that AGAT−/− mice have a combined creatine and homoarginine deficiency. We hypothesized that this would be detrimental in the setting of chronic heart failure. Methods and results: Study 1: homoarginine deficiency—female AGAT−/− and wild-type mice were given creatine-supplemented diet so that both had normal myocardial creatine levels, but only AGAT−/− had low plasma homoarginine. Myocardial infarction (MI) was surgically induced and left ventricular (LV) structure and function assessed at 6–7 weeks by in vivo imaging and haemodynamics. Study 2: homoarginine and creatine-deficiency—as before, but AGAT−/− mice were given creatine-supplemented diet until 1 week post-MI, when 50% were changed to a creatine-free diet. Both groups therefore had low homoarginine levels, but one group also developed lower myocardial creatine levels. In both studies, all groups had LV remodelling and dysfunction commensurate with the development of chronic heart failure, for example, LV dilatation and mean ejection fraction <20%. However, neither homoarginine deficiency alone or in combination with creatine deficiency had a significant effect on mortality, LV remodelling, or on any indices of contractile and lusitropic function. Conclusions: Low levels of homoarginine and creatine do not worsen chronic heart failure arguing against a major causative role in disease progression. This suggests that it is unnecessary to correct hArg deficiency in patients with heart failure, although supra-physiological levels may still be beneficial

    Relating Coral Skeletal Structures at Different Length Scales to Growth, Light Availability to Symbiodinium, and Thermal Bleaching

    Get PDF
    Light scattering of coral skeletons and tissues increases light availability to photosynthetic endosymbionts to form one of the most efficient biological collectors of solar radiation. Rapid increases in light availability during thermally-induced symbiont loss (bleaching) impair photosynthetic performance of the remaining Symbiodinium and precipitate a more severe bleaching response (optical feedback-loop hypothesis). Here we focus on light scattering of the skeleton, which is determined by light interaction with skeletal components assembled in a hierarchical fractal-like structure from tens of nanometers (e.g., calcium carbonate nanograins) to micro- and milli-meters (septa, corallites, and coenosteum) to centimeters and higher (colony form). We examined the association between skeletal structures, their role in light scattering, and species-specific bleaching responses for 88 coral species using phylogenetically-corrected analysis. We also explored the effect of growth on light scattering by modeling the fractal-like accretive growth of the skeleton (assuming a diffusion limited process of biomineralization) as a function of skeletal density, size of nanograins, fractal range of biomineralized clusters, and overall mass-fractal dimension, and validated the model with experimental data. Our results show that differences in light scattering from the top ~200 μm (micro-μs′) of the skeleton, and not from the whole skeleton (bulk-μs′), are related to bleaching susceptibility. We also demonstrate how differences in micro-μs′ of corallites and coenosteum could explain, in part, the heterogeneous light environment between polyp and coenosarc. The average effective light transport distance of coenosteum measured in 14 coral species indicates that coenosteum could transport light to the corallites, which could then function as “light-trapping devices” where photons are scattered multiple times by septa and corallite walls until absorbed by Symbiodinium. Furthermore, our fractal skeletal growth model suggests that corals that grow faster typically have lower mass-fractal dimension, denser skeletons, lower skeletal micro-μs′, and higher bleaching susceptibility. Finally, our results demonstrate that several skeletal structures of varying length scales known to modulate the light microenvironment of Symbiodinium in coral tissue are not associated with bleaching susceptibility. This work provides evidence of the relationship between skeletal growth, light scattering, and bleaching, and further supports the optical feedback-loop hypothesis of coral bleaching

    Localized rest and stress human cardiac creatine kinase reaction kinetics at 3 T.

    Get PDF
    Changes in the kinetics of the creatine kinase (CK) shuttle are sensitive markers of cardiac energetics but are typically measured at rest and in the prone position. This study aims to measure CK kinetics during pharmacological stress at 3 T, with measurement in the supine position. A shorter "stressed saturation transfer" (StreST) extension to the triple repetition time saturation transfer (TRiST) method is proposed. We assess scanning in a supine position and validate the MR measurement against biopsy assay of CK activity. We report normal ranges of stress CK forward rate (kfCK ) for healthy volunteers and obese patients. TRiST measures kfCK in 40 min at 3 T. StreST extends the previously developed TRiST to also make a further kfCK measurement during <20 min of dobutamine stress. We test our TRiST implementation in skeletal muscle and myocardium in both prone and supine positions. We evaluate StreST in the myocardium of six healthy volunteers and 34 obese subjects. We validated MR-measured kfCK against biopsy assays of CK activity. TRiST kfCK values matched literature values in skeletal muscle (kfCK  = 0.25 ± 0.03 s-1 vs 0.27 ± 0.03 s-1 ) and myocardium when measured in the prone position (0.32 ± 0.15 s-1 ), but a significant difference was found for TRiST kfCK measured supine (0.24 ± 0.12 s-1 ). This difference was because of different respiratory- and cardiac-motion-induced B0 changes in the two positions. Using supine TRiST, cardiac kfCK values for normal-weight subjects were 0.15 ± 0.09 s-1 at rest and 0.17 ± 0.15 s-1 during stress. For obese subjects, kfCK was 0.16 ± 0.07 s-1 at rest and 0.17 ± 0.10 s-1 during stress. Rest myocardial kfCK and CK activity from LV biopsies of the same subjects correlated (R = 0.43, p = 0.03). We present an independent implementation of TRiST on the Siemens platform using a commercially available coil. Our extended StreST protocol enables cardiac kfCK to be measured during dobutamine-induced stress in the supine position.Funded by: a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society [098436/Z/12/B] to CTR, the BHF Centre of Research Excellence (OJR), a BHF clinical research training fellowship [FS/15/80/31803] to MAP, a BHF fellowship [FS/14/54/30946] to JJR, an NIHR OBRC fellowship to BR, a BHF programme grant [RG/13/8/30266] to CAL and SN, and a DPhil studentship from the Medical Research Council to WTC. We acknowledge support from the Oxford NIHR Biomedical Research Centre

    Synergistic effect on cardiac energetics by targeting the creatine kinase system: in vivo application of high-resolution 31P-CMRS in the mouse

    Get PDF
    Background: Phosphorus cardiovascular magnetic resonance spectroscopy (31P-CMRS) has emerged as an important tool for the preclinical assessment of myocardial energetics in vivo. However, the high rate and diminutive size of the mouse heart is a challenge, resulting in low resolution and poor signal-to-noise. Here we describe a refined high-resolution 31P-CMRS technique and apply it to a novel double transgenic mouse (dTg) with elevated myocardial creatine and creatine kinase (CK) activity. We hypothesised a synergistic effect to augment energetic status, evidenced by an increase in the ratio of phosphocreatine-to-adenosine-triphosphate (PCr/ATP). Methods and results: Single transgenic Creatine Transporter overexpressing (CrT-OE, n = 7) and dTg mice (CrT-OE and CK, n = 6) mice were anaesthetised with isoflurane to acquire 31P-CMRS measurements of the left ventricle (LV) utilising a two-dimensional (2D), threefold under-sampled density-weighted chemical shift imaging (2D-CSI) sequence, which provided high-resolution data with nominal voxel size of 8.5 µl within 70 min. (1H-) cine-CMR data for cardiac function assessment were obtained in the same imaging session. Under a separate examination, mice received invasive haemodynamic assessment, after which tissue was collected for biochemical analysis. Myocardial creatine levels were elevated in all mouse hearts, but only dTg exhibited significantly elevated CK activity, resulting in a 51% higher PCr/ATP ratio in heart (3.01 ± 0.96 vs. 2.04 ± 0.57—mean ± SD; dTg vs. CrT-OE), that was absent from adjacent skeletal muscle. No significant differences were observed for any parameters of LV structure and function, confirming that augmentation of CK activity does not have unforeseen consequences for the heart. Conclusions: We have developed an improved 31P-CMRS methodology for the in vivo assessment of energetics in the murine heart which enabled high-resolution imaging within acceptable scan times. Mice over-expressing both creatine and CK in the heart exhibited a synergistic elevation in PCr/ATP that can now be tested for therapeutic potential in models of chronic heart failure

    Cardiac Energetics in Patients With Aortic Stenosis and Preserved Versus Reduced Ejection Fraction.

    Get PDF
    BACKGROUND: Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition. METHODS: We recruited 102 participants to 5 groups: moderate aortic stenosis (ModAS) (n=13), SevAS, left ventricular (LV) ejection fraction ≥55% (SevAS-preserved ejection fraction, n=37), SevAS, LV ejection fraction 0.99). Accompanying the fall in CK flux, total CK and citrate synthase activities and the absolute activities of mitochondrial-type CK and CK-MM isoforms were also lower (P<0.02, all analyses). Median mitochondria-sarcomere diffusion distances correlated well with CK total activity (r=0.86, P=0.003). CONCLUSIONS: Total CK capacity is reduced in SevAS, with median values lowest in those with systolic failure, consistent with reduced energy supply reserve. Despite this, in vivo magnetic resonance spectroscopy measures of resting CK flux suggest that ATP delivery is reduced earlier, at the moderate AS stage, where LV function remains preserved. These findings show that significant energetic impairment is already established in moderate AS and suggest that a fall in CK flux is not by itself a necessary cause of transition to systolic failure. However, because ATP demands increase with AS severity, this could increase susceptibility to systolic failure. As such, targeting CK capacity and flux may be a therapeutic strategy to prevent and treat systolic failure in AS.This study was principally funded by a British Heart Foundation Clinical Training Research Fellowship FS/15/80/31803 (to Dr Peterzan) with support from a British Heart Foundation Program Grant (RG/18/12/34040). Drs Neubauer and Rider acknowledge support from British Heart Foundation Center of Research Excellence. Dr Neubauer acknowledges support from the National Institute of Health Research Oxford Biomedical Research Center. Dr Rodgers receives funding from the Wellcome Trust and the Royal Society (grant no. 098436/Z/12/B) and supported by the National Institute of Health Research Cambridge Biomedical Research Center. Dr Rider is funded by the British Heart Foundation FS/16/70/32157. Dr Miller was supported by a Novo Nordisk Postdoctoral Fellowship run in conjunction with the University of Oxford. The Biotechnology and Biological Sciences Research Council provided Advanced Life Sciences Research Technology Initiative 13 funding for serial block-face scanning electron microscopy through grant BB/C014122/1 (to Prof Chris Hawes, Oxford Brookes University)

    First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007

    Get PDF
    © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present a detailed analysis of the rest-frame optical emission line ratios for three spectroscopically confirmed galaxies at z > 7.5. The galaxies were identified in the James Webb Space Telescope (JWST) Early Release Observations field SMACS J0723.3 − 7327. By quantitatively comparing Balmer and oxygen line ratios of these galaxies with various low-redshift ‘analogue’ populations (e.g. Green Peas, Blueberries, etc.), we show that no single analogue population captures the diversity of line ratios of all three galaxies observed at z > 7.5. We find that S06355 at z = 7.67 and S10612 at z = 7.66 are similar to local Green Peas and Blueberries. In contrast, S04590 at z = 8.50 appears to be significantly different from the other two galaxies, most resembling extremely low-metallicity systems in the local Universe. Perhaps the most striking spectral feature in S04590 is the curiously high [O III] λ4363/[O III] λ5007 ratio (RO3) of 0.048 (or 0.055 when dust-corrected), implying either extremely high electron temperatures, >3 × 104 K, or gas densities >104 cm−3. Observed line ratios indicate that this galaxy is unlikely to host an AGN. Using photoionization modelling, we show that the inclusion of high-mass X-ray binaries or a high cosmic ray background in addition to a young, low-metallicity stellar population can provide the additional heating necessary to explain the observed high RO3 while remaining consistent with other observed line ratios. Our models represent a first step at accurately characterizing the dominant sources of photoionization and heating at very high redshifts, demonstrating that non-thermal processes may become important as we probe deeper into the Epoch of Reionization.Peer reviewe

    A massive black hole in a low-metallicity AGN at z5.55z\sim5.55 revealed by JWST/NIRSpec IFS

    Get PDF
    We present JWST/NIRSpec Integral Field Spectrograph rest-frame optical data of the compact z=5.55z=5.55 galaxy GS_3073. Its prominent broad components in several hydrogen and helium lines (while absent in the forbidden lines), and the detection of a large equivalent width of He II λ4686\lambda4686, EW(He II) 20\sim20 Angstrom, unambiguously identify it as an active galactic nucleus (AGN). We measure a gas-phase metallicity of Zgas/Z0.210.04+0.08Z_{\rm gas}/Z_\odot\sim0.21^{+0.08}_{-0.04}, lower than what has been inferred for both more luminous AGN at similar redshift and lower redshift AGN. We empirically show that classical emission line ratio diagnostic diagrams cannot be used to distinguish between the primary ionisation source (AGN or star formation) for such low-metallicity systems, whereas different diagnostic diagrams involving He IIλ4686\lambda4686 prove very useful, independent of metallicity. We measure the central black hole mass to be log(MBH/M)8.200.16+0.11\log(M_{\rm BH}/M_\odot)\sim8.20^{+0.11}_{-0.16}. While this places GS_3073 at the lower end of known high-redshift black hole masses, it still appears to be over-massive compared to its host galaxy properties. We detect an outflow with projected velocity 700\gtrsim700~km/s and an ionised gas mass outflow rate of about 100 M/100\ M_\odot/yr, suggesting that GS_3073 is able to enrich the intergalactic medium with metals one billion years after the Big Bang.Comment: 15 pages, 10 figures; comments are welcome. Submitted to A&

    GA-NIFS: Black hole and host galaxy properties of two z\simeq6.8 quasars from the NIRSpec IFU

    Get PDF
    Integral Field Spectroscopy (IFS) with JWST NIRSpec will significantly improve our understanding of the first quasars, by providing spatially resolved, infrared spectroscopic capabilities which cover key rest-frame optical emission lines that have been previously unobservable. Here we present our results from the first two z>6 quasars observed as a part of the Galaxy Assembly with NIRSpec IFS (GA-NIFS) GTO program, DELS J0411-0907 at z=6.82 and VDES J0020-3653 at z=6.86. By observing the Hβ\beta, [OIII], and Hα\alpha emission lines in these high-z quasars for the first time, we measure accurate black hole masses, MBH=1.85e9M_{\rm{BH}}=1.85e9 and 2.9e92.9e9M_\odot, corresponding to Eddington ratios of λEdd=0.8\lambda_{\rm{Edd}}=0.8 and 0.4 for DELS J0411-0907 and VDES J0020-3653 respectively. These provide a key comparison for existing estimates from the more uncertain MgII line. We perform quasar-host decomposition using models of the quasars' broad lines to measure the underlying host galaxies. We also discover multiple emission line regions surrounding each of the host galaxies, which are likely companion galaxies undergoing mergers with these hosts. We measure the star formation rates, excitation mechanisms, and dynamical masses of the hosts and companions, measuring the MBH/MdynM_{\rm{BH}}/M_{\rm{dyn}} ratios at high-z using these estimators for the first time. DELS J0411-0907 and VDES J0020-3653 both lie above the local black hole--host mass relation, and are consistent with the existing observations of z6z\gtrsim6 quasar host galaxies with ALMA. We detect ionized outflows in [OIII] and Hβ\beta from both quasars, with mass outflow rates of 58 and 525 M_{\odot}/yr for DELS J0411-0907 and VDES J0020-3653, much larger than their host star formation rates of <33 and <54 M_\odot/yr. This work highlights the exceptional capabilities of the JWST NIRSpec IFU for observing quasars in the early Universe.Comment: 27 pages, 10 figures. Resubmitted to A&A after significant revisions. If you have cited values from our first version, please check this version and update accordingly, as many values have changed slightly thanks to improvements in our analysi
    corecore