30 research outputs found

    The Efimov's effect for a model of a three particle discrete Shr\"odinger operator

    Full text link
    In the paper we study existance of infinitly many egenvalues for a model of a three particle discrete Shr\"odinger operator.Comment: Russia

    Asymptotics for the number of eigenvalues of three-particle Schr\"{o}dinger operators on lattices

    Full text link
    We consider the Hamiltonian of a system of three quantum mechanical particles (two identical fermions and boson)on the three-dimensional lattice Z3\Z^3 and interacting by means of zero-range attractive potentials. We describe the location and structure of the essential spectrum of the three-particle discrete Schr\"{o}dinger operator Hγ(K),H_{\gamma}(K), KK being the total quasi-momentum and γ>0\gamma>0 the ratio of the mass of fermion and boson. We choose for γ>0\gamma>0 the interaction v(γ)v(\gamma) in such a way the system consisting of one fermion and one boson has a zero energy resonance. We prove for any γ>0\gamma> 0 the existence infinitely many eigenvalues of the operator Hγ(0).H_{\gamma}(0). We establish for the number N(0,γ;z;)N(0,\gamma; z;) of eigenvalues lying below z<0z<0 the following asymptotics limz0N(0,γ;z)logz=U(γ). \lim_{z\to 0-}\frac{N(0,\gamma;z)}{\mid \log \mid z\mid \mid}={U} (\gamma) . Moreover, for all nonzero values of the quasi-momentum KT3K \in T^3 we establish the finiteness of the number N(K,γ;τess(K)) N(K,\gamma;\tau_{ess}(K)) of eigenvalues of H(K)H(K) below the bottom of the essential spectrum and we give an asymptotics for the number N(K,γ;0)N(K,\gamma;0) of eigenvalues below zero.Comment: 25 page

    Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics

    Full text link
    This paper is devoted to estimates of the exponential decay of eigenfunctions of difference operators on the lattice Z^n which are discrete analogs of the Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our investigation of the essential spectra and the exponential decay of eigenfunctions of the discrete spectra is based on the calculus of so-called pseudodifference operators (i.e., pseudodifferential operators on the group Z^n) with analytic symbols and on the limit operators method. We obtain a description of the location of the essential spectra and estimates of the eigenfunctions of the discrete spectra of the main lattice operators of quantum mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on Z^3, and square root Klein-Gordon operators on Z^n

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures
    corecore