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Abstract

Two systems of partial integral equations are considered. Under some natural conditions

the equivalence of these equations, corresponding to the systems of second kind of Fredholm's

integral equations, is proved.
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A number of problems in Quantum mechanics, Field theory, Solid state physics and problems

of stability of rotor are connected to the study of systems of partial integral equations [1,2,3,4].

Let us consider the following system of non homogeneous partial integral equations

(1) fi(x; y) =
nX

j=1

Z b

a

K
(1)
ij (x; t)fj(t; y)dt+

+
nX

j=1

Z b

a

K
(2)
ij (y; t)fj(x; t)dt+ gi(x; y); i = 1; n;

and the corresponding system of homogeneous partial integral equations

(2) fi(x; y) =
nX

j=1

Z b

a

K
(1)
ij (x; t)fj(t; y)dt+

+
nX

j=1

Z b

a

K
(2)
ij (y; t)fj(x; t)dt; i = 1; n:

Here the kernels K
(1)
ij ; K

(2)
ij and the function gi i = 1; n; are given as continuous functions

de�ned on [a; b]2; with values in C,where C is a complex plan and fi; i = 1; n; are unknown

continuous functions de�ned on [a; b]2:

The problem of the equivalence of partial integral equations to Fredholm's integral equations

was studied in [2-7]. In [2] the following partial integral equation was considered

(3) f(x; y) =

Z b

a

K(1)(x; y; t)f(t; y)dt+

Z b

a

K(2)(x; y; t)f(x; t)dt+ g(x; y);

and it was shown that equation (3) is equivalent to several di�erent integral equations. These

integral equations depend on the way they were obtained and have non simple kernels.

In [5] a more general partial integral equation than (3) with additional total integral terms

was considered, and by using another method some integral equations were obtained. In this

case the kernels of the integral equations also depend on the way they were obtained and have a

non simple form. In [5] it has also been proved the existence of solutions under some additional

conditions on kernels. In work [3] equation (3) was investigated in the case when the functions K1

and K2 do not depend on x; y2[a; b], respectively. It was proven that equation (3) is equivalent

to a unique integral equation with simple kernel which does not depend on the way it was

obtained.

In the present work systems of partial integral equations (1),(11) and (2),(12) are consid-

ered, and it will be shown that under some natural conditions these systems of partial integral

equations are equivalent to corresponding systems of the second kind of Fredholm's integral
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equations with quite simple kernels. As a consequence we get a solvability theorem for these

systems of partial integral equations.

Let R
(l)
ij be the resolvent corresponding to the kernel K

(l)
ij , i.e.

R
(l)
ij (x; t) =

D
(l)
ij (x; t)

�l

; l = 1; 2;

where

(4) D
(l)
ij (x; t) = K

(l)
ij (x; t) +

nX
s1=1

Z b

a

�����
K

(l)
ij (x; t) K

(l)
is1
(x; t1)

K
(l)
s1j

(t1; t) K
(l)
s1s1(t1; t1)

����� dt+

+
1

2!

nX
s1;s2=1

Z b

a

Z b

a

��������

K
(l)
ij (x; t) K

(l)
is1
(x; t1) K

(l)
is2
(x; t2)

K
(l)
s1j

(t1; t) K
(l)
s1s1(t1; t1) K

(l)
s1s2(t1; t2)

K
(l)
s2j

(t2; t) K
(l)
s2s1(t2; t1) K

(l)
s2s2(t2; t2)

��������
dt1dt2 + : : : ;

i; j = 1; n; l = 1; 2;

is the corresponding Fredholm's minor and

(5) �l = 1+
Pn

s1=1

R b
a K

(l)
s1s1(t1; t1)dt1+

+
1

2!

nX
s1;s2=1

Z b

a

Z b

a

�����
K

(l)
s1s1(t1; t1) K

(l)
s1s2(t1; t2)

K
(l)
s2s1(t2; t1) K

(l)
s2s2(t2; t2)

����� dt1dt2 + : : : ;

is the corresponding Fredholm's determinant[8].

Theorem 1 Let �l 6= 0;l=1,2. Then the systems of partial integral equations (1) and (2) are

equivalent to the following systems of the second type of Fredholm's integral equations, respec-

tively,

fi(x; y) = Gi(x; y) +
nX

j;p=1

Z b

a

Z b

a

R
(1)
ij (x; t)R

(2)
ip (y; s)fp(t; s)dtds; i = 1; n;

and

fi(x; y) =
nX

j;p=1

Z b

a

Z b

a
R

(1)
ij (x; t)R

(2)
ip (y; s)fp(t; s)dtds; i = 1; n;

where

Gi(x; y) = gi(x; y) +
nX

j=1

Z b

a

R
(2)
ij (y; t)gj(x; t)dt+

nX
p=1

Z b

a

R
(1)
ip (x; t)gp(t; y)dt+

+
nX

j;p=1

Z b

a

Z b

a

R
(1)
ip (x; t)R

(2)
ij (y; s)gi(t; s)dtds

Corollary. 1 Assume that the conditions of the theorem are ful�lled. Then the system of non

homogeneous partial integral equations (1) has a non trivial solution if and only if the system of

homogeneous partial integral equations (2) has only a trivial solution.
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Proof of the theorem. Fixing the variable x; x 2 [a; b]; and having introduced the following

continuous functions

(6) fi(y) = fi(x; y); ĝi(y) =
nX

j=1

Z b

a

K
(1)
ij (x; t)fj(t; y)dt+ gi(x; y);

y 2 [a; b]; i= 1; n;

we get that the system of partial integral equations (1) is equivalent to the following system of

the second kind of Fredholm's integral equations

fi(y) = ĝi(y) +
nX

j=1

Z b

a

K
(2)
ij (y; t)fj(t)dt; i = 1; n:

Let � denote the set consisting of n identical copies of [a; b]; i.e.,

� = [n
i=1[a; b]i; [a; b]i = [a; b]:

We shall de�ne a measure � on the subsets s of the set � according to the formula

�(s) = �1(s) + �2(s) + : : :+ �n(s);

where �i(s) = �(s \ [a; b]i); i = 1; n; and � is the Lesbegues measure on [a,b].

We introduce the following functions on � and on ��� :

(7) f(Y ) = fi(y); Y = y 2 [a; b]i ; g(Y ) = gi(y); Y = y 2 [a; b]i;

(8) K2(Y; T ) = K
(2)
ij (y; t); Y = y 2 [a; b]i; T = t 2 [a; b]j; i; j = 1; n:

Then we obtain the following second type of Fredholm's integral equation:

(9) f(Y ) = g(Y ) +

Z
�
K2(Y; T )f(T )d�(T ):

According to the Fredholm theorem equation (9) has a unique solution if and only if the

determinant �(K2) corresponding to the kernel K2 is not equal to zero. In this case the unique

solution of equation (9) is represented in the following form:

f(Y ) = g(Y ) +

Z
�
R(Y; T ;K2)g(T )d�(T);

where R(Y; T;K2) is the resolvent corresponding to the kernel K2; that is,

(10) R(Y; T ;K2) =
D(Y; T ;K2)

�(K2)
;
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where

D(Y; T ;K2) = K2(Y; T ) +

Z
�

�����
K2(Y; T ) K2(Y; T1)

K2(T1; T ) K2(T1; T1)

�����dT+

+
1

2!

Z
�

Z
�

�������
K2(Y; T ) K2(Y; T1) K2(Y; T2)

K2(T1; T ) K2(T1; T1) K2(T1; T2)

K2(T2; T ) K2(T2; T1) K2(T2; T2)

�������
dT1dT2 + : : : ;

is the Fredholm's minor and

�(K2) = 1 +

Z
�
K2(T1; T1)dT+

+
1

2!

Z
�

Z
�

�����
K2(T1; T1) K2(T1; T2)

K2(T2; T1) K2(T2; T2)

�����dT1dT2 + : : : ;

is the Fredholm's determinant.

Transforming the integrals over � to the integrals over [a,b] we get that �(K2) = �2. By the

conditions of the theorem, �2 6= 0. Therefore, for all g(Y ) equation (7) has a unique solution

and this solution is represented by formula (10). Taking into account notations (6),(7) and (8),

and calculating the minor D(Y; T ;K2) and determinant �(K2) we shall obtain from (10) the

following system of partial integral equations, which is equivalent to system (1):

fi(x; y) = gi(x; y) +
nX

j=1

Z b

a
R

(2)
ij (y; t)gj(x; t)dt+

+
nX

j=1

Z b

a
K

(1)
ij (x; t)fj(t; y)dt+

nX
j;p=1

Z b

a

Z b

a
R

(2)
ij (y; s)fp(t; s)dtds; i = 1; n

Further, �xing the variable y; y 2 [a; b] in this system of equations and having introduced

the functions fi(x) = fi(x; y) and

gi(x) = gi(x; y) +
nX

j=1

Z b

a

R
(2)
ij (y; t)gj(x; t)dt+

+
nX

j;p=1

Z b

a

Z b

a

R
(2)
ij (y; s)fp(t; s)dtds; i = 1; n;

we get the following system of the second kind of Fredholm's integral equations

fi(x) = gi(x) +
nX

j=1

Z b

a

K
(1)
ij (x; t)fj(t)dt; i = 1; n:

Using similar arguments as the above we obtain that the system of partial integral equations

(1) is equivalent to the following system of total integral equations

fi(x; y) = gi(x; y) +
nX

j=1

Z b

a

R
(2)
ij (y; t)gj(x; t)dt+

+
nX

p=1

Z b

a

R
(1)
ip (x; t)gp(t; y)dt+
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+
nX

j;p=1

Z b

a

Z b

a

R
(1)
ip (x; t)R

(2)
ij (y; s)gi(t; s)dtds+

+
nX

j;l=1

Z b

a

Z b

a
R

(2)
ij (y; s)fK

(1)
jr (x; s) +

nX
p=1

Z b

a
R

(1)
ip (x; t)K

(1)
jr (t; s)dtgfr(t; s)dtds;

i = 1; n

The following resolvent relations

R
(1)
jp (x; t) = K

(1)
ip (x; t) +

nX
r=1

Z b

a

R
(1)
ir (x; t1)K

(1)
ir (t1; t)dt1;

j; p = 1; n;

hold. Therefore using these relations we obtain the part of the proof, concerning non homoge-

neous equation (1). For the rest of the proof we repeat the process from the �rst part of the

proof having put gi = 0; i = 1; n: So, we show that the homogeneous system of partial integral

equations is equivalent to the homogeneous system of the second kind of Fredholm's integral

equations.

Now we shall consider the following system of partial integral equations which is more general

than (1):

(11) fi(x; y) =
nX

j=1

Z b

a
K

(1)
ij (x; y; t)fj(t; y)dt+

+
nX

j=1

Z b

a

K
(2)
ij (x; y; t)fj(x; t)dt+ gi(x; y);

(12) fi(x; y) =
nX

j=1

Z b

a

K
(1)
ij (x; y; t)fj(t; y)dt+

+
nX

j=1

Z b

a

K
(2)
ij (x; y; t)fj(x; t)dt i = 1; n:

Here the kernels K
(1)
ij ; i; j = 1; n and K

(2)
ij ; i; j = 1; n are continuous functions de�ned on

[a; b]3 and gi; i = 1; n are continuous functions on [a; b]2.

Let

(13) R
(1)
ij (x; y; t) =

D
(1)
ij (x; y; t)

�1(y)
;

where D
(1)
ij (x; y; t) and �1(y) are the Fredholm's minor and determinant corresponding to the

kernels K
(1)
ij (x; y; t); i; j = 1; n and which are de�ned by the similar formulas of (4) and (5), and

let

R
(2)
ij (x; y; t) =

D
(2)
ij (x; y; t)

�2(x)
;
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where D
(2)
ij (x; y; t) and �2(x) are the Fredholm's minor and determinant corresponding to the

kernels K
(2)
ij (x; y; t); i; j = 1; n which are de�ned by the similar formulas of (4) and (5).

Theorem 2 Suppose that for all x; y2[a; b] the inequalities: �2(x) 6= 0 and �2(x) 6= 0 are

satis�ed. Then the systems of partial integral equations (11) and (12) are equivalent to the

following systems of total integral equations

fi(x; y) =
nX

j;p=1

Z b

a

Z b

a

[R
(1)
ij (x; y; t)K

(2)
ip (y; s; t)+

(14) +R
(2)
ij (x; y; t)K

(2)
ip (t; y; s)]f(t; s)dtds+

+gi(x; y) +
nX

j=1

Z b

a

R
(1)
ij (x; y; t)gj(x; t)dt+

nX
p=1

Z b

a

R
(2)
ip (x; y; t)gp(t; y)dt

and

(15) fi(x; y) =
nX

j;p=1

Z b

a

Z b

a

[R
(1)
ij (x; y; t)K

(2)
ip (y; s; t)+

+R
(2)
ij (x; y; t)K

(2)
ip (t; y; s)]f(t; s)dtds

Corollary. 2 Assume that the conditions of the theorem are ful�lled. Then the system of non

homogeneous partial integral equations (11) has a non trivial solution for each gi; i = 1; n if and

only if the system of homogeneous partial integral equations (12) has only a trivial solution.

Proof Let f = (f1; f2; :::; fn)and g = (g1; g2; :::; gn) be the vector functions de�ned on [a; b]2

with values in Cn; where Cn is an n-dimensional complex space. We de�ne the operators K1

and K2 acting in the Banach space C([a;b]2;Cn) of the continuous functions de�ned on [a; b]2 with

values in Cn; according to the following formulas:

(K1f)i(x; y) =
nX

j=1

Z b

a

K
(1)
ij (x; y; t)fj(t; y)dt

(K2f)i(x; y) =
nX

j=1

Z b

a

K
(2)
ij (x; y; t)fj(x; t)dt

Now the system of partial integral equations (11) can be written in the following operator

form

(16) f = K1f +K2f + g

According to the condition of theorem 2, �2(y) 6= 0: Therefore by the Fredholm's theorem

the operator I �K1 is invertible and its inverse operator (I �K1)
�1 has the following form

(17) (I �K1)
�1 = I +R1;
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where R1 is the integral operator in the space C([a;b]2;Rn) given by the following formula

(R1f)i(x; y) =
nX

j=1

Z b

a

R
(1)
ij (x; y; t)fj(t; y)dt

Using equality (17) we get from (16)

(18) f = (I �K1)
�1(K2f + g) = (I +R1)(K2f + g) =

= K2f +R1K2f + g +R1g

Under the conditions of the theorem the inequality �2(x) 6= 0 holds for all x2[a; b]. Reasoning

as above, we get that the operator (I �K2)
�1 exists and is represented as follows, (I �K2)

�1 =

I + R2, where R2 is the operator in C([a;b]2;Cn) given by the following formula

(R2f)(x; y) =
nX

j=1

Z b

a
R

(2)
ij (x; y; t)fj(x; t)dt

Using similar arguments as above we obtain from (16)

(19) f = K1f +R2K1f + g +R2g

From (18) we obtain

(20) K1f = K1K2f +K1R1K2f +K1g +K1R1g

For the resolvent R1 of the operator K1 the following Fredholm relation is valid,

K1R1 = R1K1 = R1 �K1

Putting the expression for R1K1 to (20) we conclude that

K1f = R1K2f +R1g:

Substituting the expression for K1f to (19) we get the following system of total integral

equations

f = R1K2f + R1g + R2K1f + g + R2g;

or

f = (R1K2 +R2K1)f + g + (R1 +R2)g;

which is the same as (14).

We proved the part of theorem 2 concerning non homogeneous equation (11). For the proof

of the part concerning homogeneous equation (12) we repeat the process from the �rst part of

the proof putting gi = 0; i = 1; n:
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