1,116 research outputs found

    Glaucoma-Related Differences in Gaze Behavior When Negotiating Obstacles

    Get PDF
    Purpose: Safe navigation requires avoiding objects. Visual field loss may affect how one visually samples the environment, and may thus contribute to bumping into objects and falls. We tested the hypothesis that gaze strategies and the number of collisions differ between people with glaucoma and normally sighted controls when navigating around obstacles, particularly under multitasking situations. Methods: Twenty persons with moderate–severe glaucoma and 20 normally sighted controls walked around a series of irregularly spaced vertical obstacles under the following three conditions: walking with obstacles only, walking and counting backward to simulate a conversation, and walking while performing a concurrent visual search task to simulate locating a landmark. We quantified gaze patterns and the number of obstacle contacts. Results: Compared with controls, people with glaucoma directed gaze closer to their current position (P < 0.05). They also directed a larger proportion of fixations (in terms of number and duration) to obstacles (P < 0.05). Despite this finding, considerably more people with glaucoma contacted an obstacle (P < 0.05). Multitasking led to changes in gaze behavior in both groups, and this was accompanied by a large increase in obstacle contacts among those with glaucoma (P < 0.05). Conclusions: Glaucoma alters gaze patterns when negotiating a series of obstacles and increases the likelihood of collisions. Multitasking in this situation exacerbates these changes. Translational Relevance: Understanding glaucoma-related changes in gaze behavior during walking in cluttered environments may provide critical insight for orientation and mobility specialists and guide the design of gaze training interventions to improve mobility

    The effect of distance on reaction time in aiming movements

    Get PDF
    Target distance affects movement duration in aiming tasks but its effect on reaction time (RT) is poorly documented. RT is a function of both preparation and initiation. Experiment 1 pre-cued movement (allowing advanced preparation) and found no influence of distance on RT. Thus, target distance does not affect initiation time. Experiment 2 removed pre-cue information and found that preparing a movement of increased distance lengthens RT. Experiment 3 explored movements to targets of cued size at non-cued distances and found size altered peak speed and movement duration but RT was influenced by distance alone. Thus, amplitude influences preparation time (for reasons other than altered duration) but not initiation time. We hypothesise that the RT distance effect might be due to the increased number of possible trajectories associated with further targets: a hypothesis that can be tested in future experiments

    Antideuteron yield at the AGS and coalescence implications

    Full text link
    We present Experiment 864's measurement of invariant antideuteron yields in 11.5A GeV/c Au + Pt collisions. The analysis includes 250 million triggers representing 14 billion 10% central interactions sampled for events with high mass candidates. We find (1/2 pi pt) d^(2)N/dydpt = 3.5 +/- 1.5 (stat.) +0.9,-0.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.8=0.35 GeV/c (y(cm)=1.6) and 3.7 +/- 2.7 (stat.) +1.4,-1.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.4=0.26 GeV/c, and a coalescence parameter B2-bar of 4.1 +/- 2.9 (stat.) +2.3,-2.4 (sys.) x 10^(-3) GeV^(2)c^(-3). Implications for the coalescence model and antimatter annihilation are discussed.Comment: 8 pages, 4 figures, Latex, submitted to Phys. Rev. Let

    High Level of Soluble HLA-G in the Female Genital Tract of Beninese Commercial Sex Workers Is Associated with HIV-1 Infection

    Get PDF
    Most HIV infections are transmitted across mucosal epithelium. Understanding the role of innate and specific mucosal immunity in susceptibility or protection against HIV infection, as well as the effect of HIV infection on mucosal immunity, are of fundamental importance. HLA-G is a powerful modulator of the immune response. The aim of this study was to investigate whether soluble HLA-G (sHLA-G) expression in the female genital tract is associated with HIV-1 infection.Genital levels of sHLA-G were determined in 52 HIV-1-uninfected and 44 antiretroviral naïve HIV-1-infected female commercial sex workers (CSWs), as well as 71 HIV-1-uninfected non-CSW women at low risk of exposure, recruited in Cotonou, Benin. HIV-1-infected CSWs had higher genital levels of sHLA-G compared with those in both the HIV-1-uninfected CSW (P = 0.009) and non-CSW groups (P = 0.0006). The presence of bacterial vaginosis (P = 0.008), and HLA-G*01:01:02 genotype (P = 0.002) were associated with higher genital levels of sHLA-G in the HIV-1-infected CSWs, whereas the HLA-G*01:04:04 genotype was also associated with higher genital level of sHLA-G in the overall population (P = 0.038). When adjustment was made for all significant variables, the increased expression of sHLA-G in the genital mucosa remained significantly associated with both HIV-1 infection (P = 0.02) and bacterial vaginosis (P = 0.03).This study demonstrates that high level of sHLA-G in the genital mucosa is independently associated with both HIV-1 infection and bacterial vaginosis

    The Blue Stragglers of the Old Open Cluster NGC 188

    Full text link
    The old (7 Gyr) open cluster NGC 188 has yielded a wealth of astrophysical insight into its rich blue straggler population. Specifically, the NGC 188 blue stragglers are characterized by: A binary frequency of 80% for orbital periods less than 10410^4 days;Typical orbital periods around 1000 days;Typical secondary star masses of 0.5 M_{\odot}; At least some white dwarf companion stars; Modestly rapid rotation; A bimodal radial spatial distribution; Dynamical masses greater than standard stellar evolution masses (based on short-period binaries); Under-luminosity for dynamical masses (short-period binaries). Extensive NN-body modeling of NGC 188 with empirical initial conditions reproduces the properties of the cluster, and in particular the main-sequence solar-type binary population. The current models also reproduce well the binary orbital properties of the blue stragglers, but fall well short of producing the observed number of blue stragglers. This deficit could be resolved by reducing the frequency of common-envelope evolution during Roche lobe overflow. Both the observations and the NN-body models strongly indicate that the long-period blue-straggler binaries - which dominate the NGC 188 blue straggler population - are formed by asymptotic-giant (primarily) and red-giant mass transfer onto main sequence stars. The models suggest that the few non-velocity-variable blue stragglers formed from mergers or collisions. Several remarkable short-period double-lined binaries point to the importance of subsequent dynamical exchange encounters, and provide at least one example of a likely collisional origin for a blue straggler.Comment: Chapter 3, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    JWST/MIRI Data Reduction and Products

    Get PDF
    The Mid-Infrared Instrument (MIRI) is one of four science instruments to be flown aboard the James Webb Space Telescope (JWST). MIRI operates from 5 to 28.5 microns and provides a suite of versatile capabilities including imaging, low-resolution spectroscopy (LRS), medium-resolution spectroscopy (MRS) via an integral field unit, and coronagraphy. The MIRI pipeline consists of three stages: 1) Raw to Slope Images, 2) Calibrated Slope Images, and 3) Multiple Exposures Combined. The pipeline is designed to provide well-calibrated, high level data products that maximize the scientific return from the instrument

    Mass dependence of light nucleus production in ultrarelativistic heavy ion collisions

    Full text link
    Light nuclei can be produced in the central reaction zone via coalescence in relativistic heavy ion collisions. E864 at BNL has measured the production of ten light nuclei with nuclear number of A=1 to A=7 at rapidity y1.9y\simeq1.9 and pT/A300MeV/cp_{T}/A\leq300MeV/c. Data were taken with a Au beam of momentum of 11.5 A GeV/cGeV/c on a Pb or Pt target with different experimental settings. The invariant yields show a striking exponential dependence on nuclear number with a penalty factor of about 50 per additional nucleon. Detailed analysis reveals that the production may depend on the spin factor of the nucleus and the nuclear binding energy as well.Comment: (6 pages, 3 figures), some changes on text, references and figures' lettering. To be published in PRL (13Dec1999

    SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells

    Get PDF
    The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization

    Antiproton Production in 11.5 A GeV/c Au+Pb Nucleus-Nucleus Collisions

    Full text link
    We present the first results from the E864 collaboration on the production of antiprotons in 10% central 11.5 A GeV/c Au+Pb nucleus collisions at the Brookhaven AGS. We report invariant multiplicities for antiproton production in the kinematic region 1.4<y<2.2 and 50<p_T<300 MeV/c, and compare our data with a first collision scaling model and previously published results from the E878 collaboration. The differences between the E864 and E878 antiproton measurements and the implications for antihyperon production are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review Letter
    corecore