101 research outputs found

    Numerical investigation of plasma-controlled turbulent jets for mixing enhancement

    Get PDF
    Plasma-controlled turbulent jets are investigated by means of Implicit Largeā€“Eddy Simulations at a Reynolds number equal to 460,000 (based on the diameter of the jet and the centreline velocity at the nozzle exit). Eight Dielectric Barrier Discharge (DBD) plasma actuators located just before the nozzle exit are used as an active control device with the aim to enhance the mixing of the jet. Four control configurations are presented in this numerical study as well as a reference case with no control and a tripping case where a random forcing is used to destabilize the nozzle boundary layer. Visualisations of the different cases and time-averaged statistics for the different controlled cases are showing strong modifications of the vortex structures downstream of the nozzle exit, with a substantial reduction of the potential core, an increase of the jet radial expansion and an improvement of the mixing properties of the flow

    The 2DECOMP&FFT library: an update with new CPU/GPU capabilities

    Get PDF
    The 2DECOMP&FFT library is a software framework written in modern Fortran to build large-scale parallel applications. It is designed for applications using three-dimensional structured meshes with a particular focus on spatially implicit numerical algorithms. However, the library can be easily used with other discretisation schemes based on a structured layout and where pencil decomposition can apply. It is based on a general-purpose 2D pencil decomposition for data distribution and data Input Output (I/O). A 1D slab decomposition is also available as a special case of the 2D pencil decomposition. The library includes a highly scalable and efficient interface to perform three-dimensional Fast Fourier Transforms (FFTs). The library has been designed to be user-friendly, with a clean application programming interface hiding most communication details from application developers, and portable with support for modern CPUs and NVIDIA GPUs (support for AMD and Intel GPUs to follow)

    Lagrangian and Eulerian dataset of the wake downstream of a smooth cylinder at a Reynolds number equal to 3900.

    Get PDF
    The dataset contains Eulerian velocity and pressure fields, and Lagrangian particle trajectories of the wake flow downstream of a smooth cylinder at a Reynolds number equal to 3900. An open source Direct Numerical Simulation (DNS) flow solver named Incompact3d was used to calculate the Eulerian field around the cylinder. The synthetic Lagrangian tracer particles were transported using a fourth-order Runge-Kutta scheme in time and trilinear interpolations in space. Trajectories of roughly 200,000 particles for two 3D sub-domains are available to the public. This dataset can be used as a test case for tracking algorithm assessment, exploring the Lagrangian physics, statistic analyses, machine learning, and data assimilation interests

    Direct numerical simulation of compressible turbulence in a counter-flow channel configuration

    Get PDF
    Counter-flow configurations, whereby two streams of fluid are brought together from opposite directions, are highly efficient mixers due to the high turbulence intensities that can be maintained. In this paper, a simplified version of the problem is introduced that is amenable to direct numerical simulation. The resulting turbulent flow problem is confined between two walls, with one non-zero mean velocity component varying in the space direction normal to the wall, corresponding to a simple shear flow. Compared to conventional channel flows, the mean flow is inflectional and the maximum turbulence intensity relative to the maximum mean velocity is nearly an order of magnitude higher. The numerical requirements and turbulence properties of this configuration are first determined. The Reynolds shear stress is required to vary linearly by the imposed forcing, with a peak at the channel centreline. A similar behaviour is observed for the streamwise Reynolds stress, the budget of which shows an approximately uniform distribution of dissipation, with large contributions from production, pressure-strain and turbulent diffusion. A viscous sublayer is obtained near the walls and with increasing Reynolds number small-scale streaks in the streamwise momentum are observed, superimposed on the large-scale structures that buffet this region. When the peak local mean Mach number reaches 0.55, turbulent Mach numbers of 0.6 are obtained, indicating that this flow configuration can be useful to study compressibility effects on turbulence

    High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach

    Get PDF
    This numerical work investigates the potential of a high-order finite-difference spectral vanishing viscosity approach to simulate gravity currents at high Reynolds numbers. The method introduces targeted numerical dissipation at small scales through altering the discretisation of the second derivatives of the viscous terms in the incompressible Navier-Stokes equations to mimic the spectral vanishing viscosity (SVV) operator, originally designed for the regularisation of spectral element method (SEM) solutions of pure advection problems. Using a sixth-order accurate finite-difference scheme, the adoption of the SVV method is straightforward and comes with a negligible additional computational cost. In order to assess the ability of this high-order finite-difference spectral vanishing viscosity approach, we performed large-eddy simulations (LES) of a gravity current in a channelised lock-exchange set-up with our SVV model and with the well-known explicit static and dynamic Smagorinsky sub-grid scale (SGS) models. The obtained data are compared with a direct numerical simulation (DNS) based on more than 800 million mesh nodes, and with experimental measurements. A framework for the energy budget is introduced to investigate the behaviour of the gravity current. First, it is found that the DNS is in good agreement with the experimental data for the evolution of the front location and velocity field as well as for the stirring and mixing inside the gravity current. Secondly, the LES performed with less than 0.4% of the total number of mesh nodes compared to the DNS, can reproduce the main features of the gravity currents, with the SVV model yielding slightly more accurate results. It is also found that the dynamic Smagorinsky model performs better than its static version. For the present study, the static and dynamic Smagorinsky models are 1.8 and 2.5 times more expensive than the SVV model, because the latter does not require the calculation of explicit SGS terms in the Navier-Stokes equations nor spatial filtering operations

    Threeā€dimensional turbulenceā€resolving simulations of the plunge phenomenon in a tilted channel

    Get PDF
    Hyperpycnal flows are produced when the density of a fluid flowing in a relatively quiescent basin is greater than the density of the fluid in the basin. The density differences can be due to the difference in temperatures, salinity, turbidity, concentration, or a combination of them. When the inflow momentum diminishes, the inflowing fluid eventually plunges under the basin fluid and flows along the bottom floor as an underflow density current. In the present work, 3ā€D turbulenceā€resolving simulations are performed for an hyperpycnal flow evolving at the bottom floor of a tilted channel. Using advanced numerical techniques designed for supercomputers, the incompressible Navierā€Stokes and transport equations are solved to reproduce numerically the experiments of Lamb et al. (2010, https://doi.org/10.1130/B30125.1) obtained inside a flume with a long tilted ramp. This study focuses on presenting and validating a new numerical framework for the correct reproduction and analysis of the plunge phenomenon and its associated flow features. A very good agreement is found between the experimental data of Lamb et al. (2010), the analytical models of Parker and Toniolo (2007, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(690)), and the present turbulenceā€resolving simulations. The mixing process between the ambient fluid and the underflow density current is also analyzed thanks to visualizations of vortical structures at the interface
    • ā€¦
    corecore