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Abstract

This numerical work investigates the potential of a high-order finite-difference spectral
vanishing viscosity approach to simulate gravity currents at high Reynolds numbers.
The method introduces targeted numerical dissipation at small scales through altering
the discretisation of the second derivatives of the viscous terms in the incompressible
Navier-Stokes equations to mimic the spectral vanishing viscosity (SVV) operator, origi-
nally designed for the regularisation of spectral element method (SEM) solutions of pure
advection problems. Using a sixth-order accurate finite-difference scheme, the adoption of
the SVV method is straightforward and comes with a negligible additional computational
cost. In order to assess the ability of this high-order finite-difference spectral vanishing
viscosity approach, we performed large-eddy simulations (LES) of a gravity current in
a channelised lock-exchange set-up with our SVV model and with the well-known ex-
plicit static and dynamic Smagorinsky sub-grid scale (SGS) models. The obtained data
are compared with a direct numerical simulation (DNS) based on more than 800 million
mesh nodes, and with experimental measurements. A framework for the energy budget
is introduced to investigate the behaviour of the gravity current. First, it is found that
the DNS is in good agreement with the experimental data for the evolution of the front
location and velocity field as well as for the stirring and mixing inside the gravity cur-
rent. Secondly, the LES performed with less than 0.4% of the total number of mesh nodes
compared to the DNS, can reproduce the main features of the gravity currents, with the
SVV model yielding slightly more accurate results. It is also found that the dynamic
Smagorinsky model performs better than its static version. For the present study, the
static and dynamic Smagorinsky models are 1.8 and 2.5 times more expensive than the
SVV model, because the latter does not require the calculation of explicit SGS terms in
the Navier-Stokes equations nor spatial filtering operations.
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1. Introduction

Gravity or density currents are commonly found in many physical processes involving
the mixing between two fluids of different densities. They are driven by the density3

difference between a heavy fluid and a lighter ambient fluid. In nature, they can travel over
long distances, up to hundreds of kilometres, in lakes, seas and oceans, with flow speeds
of up to 20 m s−1 even on nearly flat floors (Piper et al., 1999). The density difference can6

be caused by temperature, salinity or solid material in suspension. Examples of such flow
phenomena are cold fronts, seafloor turbidity currents, snow avalanches, riverine plumes,
pyroclastic lava flows, or anthropogenic like oil spills in the oceans and gas leaks in the9

atmosphere, and debris flows in urban areas from buildings collapse (Simpson, 1999; Allen,
2012). Understanding the physical mechanisms associated with these currents as well as
the correct prediction of their main features are of great importance for practical and12

theoretical purposes. Gravity currents observed in nature are complex, very voluminous
and are extremely challenging and costly to study. As a result, they have been mainly
investigated in very simplified configurations such as the lock-exchange set-up (often in15

a channel configuration) where a sliding gate separates two volumes of fluid at rest;
one volume contains a heavy fluid and the other a light one. When the gate is removed,
differences in hydrostatic pressure generate a dense current moving along the bottom wall,18

while a neutrally buoyant current travels in the opposite direction along the top wall or
free surface. Different phases of spreading have been identified for gravity currents in the
lock-exchange set-up: (i) an acceleration phase where the current initially at rest reaches21

its maximum velocity, (ii) a slumping phase with a nearly constant front velocity, (iii)
an inertial phase for which the buoyancy driving force is balanced by inertia and during
which the current starts to decelerate, and (iv) a viscous phase for which the buoyancy24

driving force is balanced by viscosity (Huppert and Simpson, 1980; Bonnecaze et al.,
1993; Huppert and Simpson, 1980; Cantero et al., 2007b). Note that the last two phases
are sometimes referred to as self-similar phases (Huppert and Simpson, 1980), although27

in some set-ups (e.g. short tanks or high concentrations) the viscous phase may not
be observed. Contrarily, low Reynolds number cases (e.g. low concentration flows), the
current may rapidly shift to a viscous dominated phase of spreading without experiencing30

an inertial phase (see Cantero et al. (2008) for details). Turbulent structures have also
been identified as key components of the dynamics of gravity currents. Instabilities
originating from the shear between the current and the ambient flow, as well as the near-33

wall high- and low-speed streaks, lead to well-known “lobe and cleft” structures located at
the head of the current (Härtel et al., 2000; Espath et al., 2015). These coherent structures
also enhance the exchange of mass and momentum between the ambient (lighter) and36

current (heavier) fluids, enabling mixing through turbulent entrainment (Ellison and
Turner, 1959; Fragoso et al., 2013; Sher and Woods, 2015; van Reeuwijk et al., 2018).

To establish most of the existing knowledge on gravity currents, detailed experimental39

studies (Britter and Simpson, 1978; Britter and Linden, 1980; Rottman and Simpson,
1983; Gladstone et al., 1998; de Rooij and Dalziel, 2001; Shin et al., 2004; Nogueira
et al., 2014; Sher and Woods, 2015, 2017; Ottolenghi et al., 2017; Zemach et al., 2019;42

Martin et al., 2019, 2020; De Falco et al., 2020, 2021) and direct numerical simulations
(DNS) (Necker et al., 2002, 2005; Cantero et al., 2007a; Nasr-Azadani and Meiburg, 2014;
Espath et al., 2014; Zgheib et al., 2015; Francisco et al., 2018) have been employed in45

simplified configurations. DNS requires the flow field to be resolved adequately down to
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the smallest turbulent scales, where the energy of the flow is dissipated into heat. With
such resolution requirements and current petascale supercomputers, DNS for gravity48

currents are limited to moderate Reynolds numbers, typically Re ∼ O(104). DNS at
higher Reynolds numbers are in theory possible but require a substantial amount of
computational resources. On the other hand, large-eddy simulation (LES) is another51

widely used strategy to numerically study turbulent flows thanks to its ability to capture
the main turbulent scales of the flow at a much lower cost than DNS, see Meneveau and
Katz (2000); Sagaut (2006) for an introduction.54

LES has emerged recently as an appropriate tool to study the main features of gravity
currents (Constantinescu, 2014; Meiburg et al., 2015). In LES, the mesh resolution is fine
enough to accurately approximate the dynamic of most of the turbulent scales (up to a57

filter/mesh scale) while the contribution of the unresolved small scales is modelled. The
traditional presentation of LES is based on the introduction of low-pass filtering to define
the large-scale part of the flow whereas the residual part from the filtering operation is re-60

ferred to as the subgrid-scale (SGS) part. LES can provide answers to more-realistic, and
higher-Reynolds-number problems, however, it relies on the adequate modelling of the
energy transfers between the resolved and the SGS which is often parametrised through63

structural eddy viscosity models (Smagorinsky, 1963; Germano et al., 1991; Meneveau
and Lund, 1997; Vreman, 2004). Inherently, the selection of the SGS model and the cor-
rect tuning of its parameters can dramatically affect the quality of the solution. Moreover,66

the interaction of the different LES parametrisations with the underlying numerical er-
rors of the discretisation schemes was shown to be an important factor for accuracy
(Vreman et al., 1996; Ghosal, 1996; Chow and Moin, 2003). To this end, implicit LES69

(iLES) methodologies, which utilise purely dissipative numerical schemes (e.g. upwinding
schemes), have become viable alternative solutions in LES studies by combining numerical
and physical parametrisations (Boris et al., 1992; Grinstein and Fureby, 2004).72

More recently, a new class of dissipation-inducing numerical schemes have emerged for
high-order methods originating from the concept of spectral vanishing viscosity (SVV)
proposed by Tadmor (1989). While the method was originally proposed for regularis-75

ing spectral solutions of the Burger’s equations, it was later employed to control high-
wavenumber oscillations in the context of the incompressible Navier-Stokes equations
(Karamanos and Karniadakis, 2000; Kirby and Karniadakis, 2002; Pasquetti, 2005; Pas-78

quetti et al., 2008). Unlike the previously mentioned implicit LES schemes (which often
rely on upwind schemes to add numerical dissipation), SVV adds dissipation exclusively
to smaller scales, as defined by the mesh cut-off scale. A recent effort to employ the81

concept of SVV in higher-order compact finite difference schemes was proposed by Lam-
ballais et al. (2011), in which a numerical kernel was designed to manipulate numerical
errors of the viscous term in the incompressible Navier-Stokes equations (via customised84

finite-difference schemes for the second derivatives). The strategy was initially aimed
at controlling dispersive and aliasing errors at near cut-off scales. Due to its excellent
performance, it was later extended and successfully applied to LES studies of isotropic87

turbulence (i.e. Taylor-Green vortex, Dairay et al. (2017)) as well as more complex flows
(e.g. jets, wakes, etc.) (Dairay et al., 2014; Ioannou and Laizet, 2018; Deskos et al.,
2019).90

For gravity currents, several LES studies have been performed in recent years, mainly
based on an explicit SGS model approach. A review of LES of gravity currents was pre-
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sented in Constantinescu (2014) along with new results based on a dynamic Smagorinsky93

model and a non-dissipative viscous flow solver. This work discussed how the evolution
and structure of gravity currents change when the Reynolds number is increased to values
relevant in nature and environmental engineering applications. LES of lock-exchange in96

a channel set-up for a flatbed were performed in Ooi et al. (2009). The LES solver in
this study used a non-dissipative numerical scheme and was combined with the dynamic
Smagorinsky model to account for the effect of the SGS stresses. The authors investigated99

the effect of the Reynolds number on the near-bed flow structure and the friction velocity
distribution at the bottom of the channel, by performing simulations up to Re ∼ 250, 000.
The Reynolds number dependence on mixing for lock-exchange gravity current was inves-102

tigating in Özgökmen et al. (2009) using DNS and LES. Six different LES models were
tested and it was found that all LES models provide an improvement with respect to
DNS, however, it was not possible to identify a clear and consistent superior LES model.105

Gravity currents past circular cylinders mounted above a wall were investigated in
Gonzalez-Juez et al. (2010) using 2D and 3D LES with a focus on the force load on the
cylinder and the behaviour of the friction velocity at the bottom wall near it. Their108

simulations considered Reynolds numbers in the range of 2, 000-45, 000. LES were also
employed by Tokyay et al. (2011) and Tokyay et al. (2014) to investigate the structure
and evolution of a gravity current in a channelised lock-exchange set-up with a series of111

identical large-scale obstacles (dunes and square ribs) at the channel bottom. A dynamic
approach similar to the dynamic Smagorinsky model was used for the unresolved scales
(see Pierce (2001) for more details). These studies looked into the effect of the roughness114

elements shape and height as well as the Reynolds number dependence on the temporal
variation of the front velocity, mixing, and flow structure of the current. In Ottolenghi
et al. (2016a,b) LES based on the dynamic Smagorinsky model were performed to study117

mixing and entrainment in unsteady gravity currents down a slope with different initial
density difference and aspect ratio for the released volume. Data were compared with
laboratory experiments, and the results showed a reasonable agreement. Ottolenghi et al.120

(2018) examined the ability of Lattice-Boltzmann Method (LBM) to reproduce the fun-
damental features of lock-exchange gravity current by performing 2D and 3D LES at
different Reynolds numbers. A peculiar modification of the basic LBM, equivalent to123

the Smagorinsky model, was employed using an effective collision relaxation time and
obtained good agreement with laboratory data for Reynolds numbers up to Re = 30, 000.
LES of gravity currents in an axisymmetric lock-exchange set-up were performed in In-126

ghilesi et al. (2018) for Reynolds numbers spanning several orders of magnitude. Their
results reported hydraulic shocks for high Reynolds numbers which is consistent with re-
sults reported of Grundy and Rottmant (1986) where a shallow-water equation solver was129

used. LES of lock-exchange gravity currents propagating over a mobile reach were pre-
sented in Kyrousi et al. (2018) to study the underlying mechanisms leading to sediment
entrainment for different Reynolds numbers and grain sizes. To model the unresolved132

scales in these two studies, the authors used the dynamic Smagorinsky with the constant
evaluated using the Lagrangian procedure of Meneveau et al. (1996) (see Armenio and
Sarkar (2002); Roman et al. (2010) for more details). The choice of the Lagrangian model135

in these studies was motivated by the absence of directions of homogeneity in the develop-
ment of the currents. Density currents with a continuous release with a jet shape of dense
fluid from a finite source down a sloping bed were studied recently in Chawdhary et al.138
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(2018). The authors studied the influence of the slope angle and stratification using LES
based on a dynamic Smagorinsky model. Several approaches based on LES SGS models,
detached eddy simulation (DES), delayed-detached eddy simulation (DDES), Launder-141

Reece-Rodi (LRR), and k-ε models were evaluated by Emami et al. (2020) for gravity
currents in the lock-exchange set-up. It was found that only DES and LES were able
to capture the Kelvin-Helmholtz instability and the viscous phase of spreading. More144

recently, Pelmard et al. (2020) used 200 LES based on the Smagorinsky model to provide
a statistical analysis of a lock-exchange gravity current propagating over a 2% slope for
a Reynolds number of 60, 000, matching the experiments of Wilson et al. (2018). It was147

found that the front velocity compares very well with analytical scaling laws, as well as
experimental and numerical results previously reported. Likewise, the Kelvin-Helmholtz
instabilities and the lobe and cleft instabilities at the front were correctly predicted. The150

authors also discussed the mechanisms of production and destruction of turbulence at
the front of the current. The same authors investigated the influence of the mesh resolu-
tion in a LES context for a lock-exchange turbidity current (Pelmard et al., 2018). The153

simulations were performed with a standard Smagorinsky model for a range of Reynolds
numbers ranging from transitional currents to fully-developed ones. Spanwise two-point
correlations were used to inform on the resolution needed to resolve the largest scales of156

the current and to check the placement of the LES filter size inside the inertial range.
In the present numerical study, the potential of the high-order finite-difference spec-

tral vanishing viscosity approach of Lamballais et al. (2011) is investigated to simulate159

accurately gravity currents at high Reynolds numbers. The method can introduce a
targeted numerical dissipation at small scales through the discretisation of the second
derivatives of the viscous term in the incompressible Navier-Stokes equations, mimick-162

ing a conventional spectral vanishing viscosity (SVV) approach. Based on sixth-order
accurate finite-difference schemes, the method is straightforward to implement with a
negligible computational extra cost by comparison to more conventional explicit LES165

models. The computational set-up and Reynolds number have been chosen so that they
match the experimental measurements of Fragoso et al. (2013). In order to properly
assess the potential of this SVV model, a large-scale DNS is also performed in order to168

compare quantities which are not available experimentally. To the best of our knowledge,
this is one of the DNS with the highest Reynolds number for gravity currents in a lock-
exchange set-up. LES with the well-known static and dynamic Smagorinsky models are171

also performed for comparison purposes. A novel framework for the energy budget is also
introduced, in order to investigate the behaviour of the gravity current. One originality
of the present study is that the LES are performed in the context of highly accurate174

finite-difference numerical methods. Such methods are desirable in a DNS context due to
their ability to provide accurate results. However, in the context of LES, the sensitivity
of high-order schemes at small scale can be counterproductive if there is a direct source177

of numerical errors, such as aliasing (Kravchenko and Moin, 1997) at scales close to the
mesh size. In particular, an explicit SGS model designed to reproduce the dissipation of
the unresolved scales can be a strong source of numerical errors (the extra non-linearity180

introduced in the LES equations can produce additional aliasing errors).
The paper is organised as follow: the problem definition, the different LES approaches

and the flow solver are described in section 2. The comparison between the experiments183

of Fragoso et al. (2013) and our DNS is presented in section 3 followed by the LES results
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Figure (1) 2D schematic view of a channelised lock-exchange set-up.

in section 4. The paper is ended by a summary and conclusion in section5. A sensitivity
study regarding the SVV approach is presented in Appendix A.186

2. Problem definition and modelling approaches

2.1. Governing equations

To simulate gravity currents in a channelised lock-exchange set-up, we consider a fi-
nite volume release of a heavier fluid (density ρc) into a horizontal channel filled with
lighter and initially calm ambient fluid (density ρa). Schematically, the flow configura-
tion is presented in figure 1. The streamwise direction is x1, the vertical direction is x2
and the spanwise direction is x3. The heavier fluid is enclosed in a sub-domain of size
L1,b × L2,b × L3 in the computational domain of size L1 × L2 × L3. At the initial time
t = 0, the heavier fluid is released and the flow is driven purely by gravitational effects.
To describe the dynamics of the gravity current mathematically, we make use of the
unsteady incompressible Navier-Stokes equations coupled with a density transport equa-
tion. The coupling is achieved through a Boussinesq approximation of the gravitational
term (ρc−ρa)/ρagegi where g is the gravity acceleration and egi = (0,−1, 0) represents the
unity vector acting in the direction of gravity. In the most generic, non-dimensional and
unified (to accommodate both DNS and the various LES approaches) form, the governing
equations can be written as

∂ui
∂xi

= 0, (1a)

∂ui
∂t

= −1

2

(
uj
∂ui
∂xj

+
∂uiuj
∂xj

)
− ∂p

∂xi
+

1

Re
D + egiRiρ, (1b)

∂ρ

∂t
= −uj

∂ρ

∂xj
+

1

Re · ScQ (1c)

where ui is the velocity vector field, p the pressure field and ρ is the density field.189

No reference to any filter is explicitly written in the equations. In a LES context, the
unknowns ui, ρ and p should be interpreted as the large-scale component of velocity,
density and pressure.192
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The momentum diffusion term D can be expressed as

D =
∂2ui
∂xj∂xj

for DNS (see section 2.2),

D =
∂

∂xj

[
(1 +Re · νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
for explicit LES (see section 2.3),

D =
∂2ui
∂xj∂xj

+
∂

∂xj

(
Qc ?

∂ui
∂xj

)
for SVV model (see section 2.4).

νt is the eddy viscosity computed by an explicit LES model. Qc is a hyperviscous kernel
used to construct the SVV operator through a convolution operation (?), as explained in
section 2.4. It will be shown that the hyperviscous kernel, although conceptualised purely195

in the spectral (wavenumber) domain, is meant for and applied only to the physical do-
main. The non-linear term of the momentum equation is computed in the skew-symmetric
form for increased stability and to reduce aliasing errors (Kravchenko and Moin, 1997),198

while the non-linear transport term is evaluated in its non-conservative form due to the
use of different types of boundary conditions for the density field and velocity fields. The
density diffusion term Q is defined in a similar fashion to the momentum diffusion term D201

(the operators for the derivatives in Q are the same as the operators in D). Nonetheless,
irrespective of the viscous/density diffusion operators formulation the non-dimensional
governing equations are both expressed in terms of the Reynolds (Re) and Richardson204

(Ri) numbers. Their magnitude will ultimately change the physical characteristics of
turbulence and therefore should be defined and computed with respect to the problems
physical parameters. Thus, based on the initial density difference between the heavier207

and ambient fluid as well as the initial height L2,b of the heavy fluid column we apply an
energy balance,

1

2
ρcU

2
b =

1

L2,b

∫ L2,b

0

g(ρc − ρa)x2dx2, (3)

to obtain a characteristic (or buoyancy) velocity scale Ub =
√
g′L2,b, where g′ = g(ρc −210

ρa)/ρa. Here we also assume for the energy balance that the entire dynamic energy of
the initial set-up is converted to kinetic energy without any losses. This assumption
although not valid (due to viscous effects), allows us to define global characteristic scales213

for the velocity and time variables. With this definition, the characteristic global Reynolds
number can be expressed as

Re =
UbL2,b

ν
, (4)

where ν is the kinematic viscosity assumed to be the same for the two fluids. Similarly,216

the overall (bulk) Richardson number is given by

Ri =
g′L2,b

U2
b

. (5)

Note that the choice of L2,b as characteristic length scale leads to Ri = 1. Additionally,
we may define a dimensionless time scale τ = L2,b/Ub which can be used to scale the219

time evolution of the gravity current. Finally, for the density transport the Schmidt (or
Prandtl in the case of temperature) number Sc = ν/κ is defined based on a (constant)
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molecular diffusivity coefficient of the stratifying agent κ and is set to unity to avoid the222

use of finer meshes. It has been shown in Bonometti and Balachandar (2008) that the
Schmidt number only weakly influences the structure and dynamics of gravity currents
if the Reynolds number of the flow is large, O(104) or more. On the contrary, gravity225

currents at low to moderate Reynolds numbers are dependant on the Schmidt number as
the structure of the mixing region and the front velocities can be modified by diffusion
effects.228

Regarding boundary conditions and initial conditions, a no-slip boundary condition
is applied for the velocity for x2 = 0 while free-slip boundary conditions for x1 = 0,
x1 = L1 and x2 = L2 and periodic boundaries in the spanwise direction are imposed. For231

the density, a zero-flux (∂ρ/∂xi = 0) boundary condition is applied everywhere (x1 = 0,
x1 = L1, x2 = 0, x2 = L2), except in the spanwise direction where periodic boundary
conditions are imposed. For the initial condition, the density concentration is prescribed234

by
ρ(x1, x2, x3, t = 0) = 0.5− 0.5 tanh [δb(x1 − L1,b)] . (6)

In this work, the value δb = 20 was found sufficient to avoid discontinuities in the deriva-
tives while having a sharp enough profile to reproduce a virtual gate, even for the coarse237

mesh of the LES. Furthermore, the initial spatially-averaged velocity field is zero every-
where in the domain with white noise (corresponding to an initial kinetic energy of 1%)
superposed to all velocity components at the gate position (x = L1,b) in order to trigger240

flow instabilities (similar to the removal of the gate in an experiment).

2.2. Flow solver

The simulations in this study are carried out within the open-source, turbulence243

simulation framework Xcompact3D1, designed for DNS and LES of incompressible and
low-Mach number flows using a Cartesian mesh and high-order finite-difference schemes
(Laizet and Lamballais, 2009; Laizet and Li, 2011; Bartholomew et al., 2020). The in-246

compressible flow solver within Xcompact3D is called Incompact3d and is based on sixth-
order compact finite-difference schemes (Laizet and Lamballais, 2009) for the spatial-
discretisation and a fractional-step method using a third-order explicit Adams-Bashforth249

method for the temporal integration (other time schemes are available, depending on the
flow configuration). Within the fractional-step method, the incompressibility condition is
dealt with by directly solving a Poisson equation in spectral space using 3D Fast Fourier252

Transforms and the concept of the modified wavenumber (Lele, 1992). The velocity-
pressure mesh arrangement is half-staggered to avoid spurious pressure perturbations
(Laizet and Lamballais, 2009).255

The simplicity of the mesh allows an easy implementation of a 2D domain decompo-
sition based on pencils (Laizet and Li, 2011). The computational domain is split into
a number of sub-domains (pencils) which are each assigned to an MPI-process. The258

derivatives and interpolations in the x-direction (y-direction, z-direction) are performed
in X-pencils (Y-pencils, Z-pencils), respectively. The 3D FFTs required by the Pois-
son solver are also broken down as a series of 1D FFTs computed in one direction at261

a time. Global transpositions to switch from one pencil to another are performed with

1Freely available at github.com/xcompact3d/

8



the MPI command MPI_ALLTOALL(V). The flow solvers within Xcompact3D can scale well
with up to hundreds of thousands of MPI-processes for simulations with several billion264

mesh nodes (Laizet and Li, 2011). The Xcompact3D framework has been used recently
to perform DNS of Boussinesq gravity currents in various set-up and for a wide range of
Reynolds numbers (Espath et al., 2014, 2015; Francisco et al., 2018; Lucchese et al., 2019)267

and DNS of non-Boussinesq gravity currents (Bartholomew and Laizet, 2019). Finally,
further validation and verification studies of the code for the SVV model and the explicit
LES models can be found in: Dairay et al. (2014, 2017); Ioannou and Laizet (2018);270

Deskos et al. (2019); Schuch et al. (2018); Deskos et al. (2020).

2.3. Explicit SGS modelling

In this study, two reference explicit SGS models have been tested for comparison with
the present SVV approach. Explicit LES relies on the direct modelling of the velocity
and density subgrid-scale (SGS) stresses which appear in the momentum and density
transport equations. To this end, the eddy viscosity νt and diffusivity κt variables are
defined to approximate the subgrid-scale (SGS) stresses under the Boussinesq hypothesis,

τij = −2νtSij (7a)

qj = −κt
∂ρ

∂xj
(7b)

where Sij = 0.5(
∂ui
∂xj

+
∂uj
∂xi

) is the strain rate tensor. The eddy viscosity νt and eddy273

diffusivity κt are connected through the turbulent Schmidt number, κt = νt/Sct. In
our simulations the turbulent Schmidt number is set to unity as in the vast majority of
numerical studies of gravity currents. Alternatively, an empirical relationship to scale276

Sct as function of the coupling term can be sought (see Venayagamoorthy et al. (2003);
Mahdinia et al. (2011)). The eddy viscosity can be modelled using a functional approach
such as the ones afforded by the standard or dynamic Smagorinsky models (Smagorinsky,279

1963; Germano et al., 1991). Starting with the standard Smagorisnky model (SSM), the
eddy viscosity is assumed to be proportional to the magnitude of the strain rate |S| as well
as a length scale lS = CS∆ which is proportional to the mesh scale ∆ = 3

√
∆x1∆x2∆x3282

and an empirical coefficient CS,
νt = C2

S∆2 |S| . (8)

The empirical coefficient CS = 0.15 is chosen for the simulations which is close to the
theoretical value proposed by Lilly (1966) for isotropic and homogeneous turbulence (a285

preliminary study confirmed that this value was the optimal value for the present set-
up). The SSM has enjoyed popularity over the years thanks to its simple implementa-
tion, however, it has been found to behave over-dissipatively near walls and/or within288

turbulence-transition regions (Meneveau and Katz, 2000). To this end, an alternative
calculation of the eddy viscosity was proposed by Germano et al. (1991) to adjust the
Smagorinsky coefficient CS in both space and time through a purely dynamic procedure.291

The model is based on Germano’s algebraic identity (Germano et al., 1991) which relates
subgrid/filter-scale stresses computed at two different levels,

Lij = Tij − τ̃ij = ũiuj − ũiũj (9)
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where Tij = ũiuj − ũiũj are the test filter level scale stresses, and τ̃ij are the subgrid-294

scale stresses filtered at the test filter scale. Note that (̃. . . ) denotes the test filter level

operation with ∆̃ = 2∆. By assuming an eddy viscosity model such as the standard
Smagorinsky just described in the previous paragraph and using Lilly’s least-squares nor-297

malisation technique Lilly (1992) we may obtain an expression for the DS eddy viscosity,

νt =
1

2

〈 MijLij
MklMkl

〉
x3

∆2 |S| , (10)

where
Mij = 2∆2 |̃S|Sij − 2∆̃2|S̃|S̃ij. (11)

〈〉x3 corresponds to an average in the spanwise direction (homogeneous direction of the300

current). The eddy viscosity and diffusivity are subsequently used in the momentum and
density diffusion terms for their calculations as discussed in sub-section 2.1.

2.4. Spectral Vanishing Viscosity303

Spectral vanishing viscosity (SVV) used as a LES model has its roots in the concepts
of spectral and hyper eddy viscosity (Kraichnan, 1976; Cerutti et al., 2000; Haugen and
Brandenburg, 2004). The key idea of spectral eddy viscosity as discussed by Kraichnan306

(1976) is that if one closely examines how eddy viscosity acts upon different wavenum-
ber modes, then it can be shown that eddy viscosity must be allowed to depend upon
the wavenumber magnitude. With this development, wavenumber dependent or simply309

spectral eddy viscosity (SEV) models were devised and applied in the spectral domain
by Chollet and Lesieur (1981); Lesieur and Rogallo (1989); Métais and Lesieur (1992).
For more information on SEV models, the reader is referred to the review of Lesieur and312

Metais (1996). On the other hand, Haugen and Brandenburg (2004) undertook high-
Reynolds number turbulence simulation by using the concept of hyperviscosity (ν∇6u
instead of ν∇2u) and observed no significant differences as far as the inertial region or315

the bottleneck phenomenon (Falkovich, 1994) of the energy spectra is concerned, while
significantly reducing their mesh resolution. Spectral vanishing viscosity combines the
two models by conceptualising eddy viscosity in the spectral domain but applying it in318

the physical domain in a form similar to hyperviscosity. The SVV operator is imple-
mented by multiplying the Fourier coefficients of the velocity field, ui, with the Fourier
coefficients of a smooth SVV kernel Qc,321

ν0
∂

∂xj

[
Qc ?

∂ui
∂xj

]
= −ν0

∑
k0≤|k|≤kc

k2Q̂cûke
ikxk (12)

where ν0 is the magnitude of SVV, ? denotes a convolution operator and kn and k0 are the
cut-off wavenumber (defined by the mesh size) and the wavenumber above which SVV is
activated, respectively. The Fourier coefficients of the smooth kernel, may be expressed324

via an exponential function following Karamanos and Karniadakis (2000)

Q̂c(k) = exp

[
−
(
k − kc
γkc − k

)2]
, for k ≥ γkc. (13)
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Figure (2) Normalised SVV kernels as a function of the normalised wavenumber k/kc for different γ.

This kernel is different from the original Heaviside function proposed by Tadmor (1989)
and it can be argued that it exhibits a number of advantages. It should be noted that one327

may easily change the shape of the kernel by changing the value of γ. With increasing γ
the SVV kernel becomes steeper and thus affects only the smaller length-scales. On the
other hand, as γ becomes smaller, the range of the scales affected by eddy viscosity is330

broadened, which better resembles the behaviour of a spectral eddy viscosity model. For
our study, a value γ = 0.3 is chosen as it is the value which gives the closest match with
the exponential model of Karamanos and Karniadakis (2000). The effect of parameter γ333

is shown in figure 2 where the wavenumber range in which the SVV viscosity is applied
(and its respective amplitude) appears to decrease with increasing γ. The implementation
of the discrete SVV kernel in the framework of high-order compact finite-differences is336

discussed in sub-section 2.5. Compared to the hyperviscosity model, e.g. Haugen and
Brandenburg (2004), spectral vanishing viscosity differs in that the amount of dissipation
added to the solution is active only after a particular wavenumber and therefore does339

not affect large energetic scales (triad interaction between the resolved scales). Finally,
regarding determining the magnitude of eddy viscosity ν0, most previous studies have
relied on a “trial-and-error” approach, and an optimum value is often selected based342

on a better agreement with the reference data. In recent work, however, Dairay et al.
(2017) determined the magnitude of SVV in the context of isotropic turbulence using
Pao’s equilibrium energy spectrum. This approach will be considered here together with345

several other values for ν0. An alternative approach is that of using the dynamic SVV
model (Kirby and Karniadakis, 2002; Deskos et al., 2019) in which the spectral eddy
viscosity is scaled locally by the magnitude of the strain-rate tensor. Such an approach348

for gravity currents was tested in a preliminary study and did not provide an improvement
in the quality of the solution when compared to the approach used in the present work.

2.5. Implementation of the SVV and filtering operators using high-order finite-difference351

schemes

The high-order strategy considered in this study for accuracy is based on finite-
difference schemes implemented on a Cartesian mesh. The main advantages of this354

specific numerical configuration being its simplicity and efficiency (Lele, 1992; Laizet
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and Lamballais, 2009). The second order derivatives in the momentum diffusion term D
and density diffusion term Q are based on a compact (implicit) finite-difference scheme,357

with a 3-9 node stencil:

αf ′′i−1 + f ′′i + αf ′′i+1 = a
fi+1 − 2fi + fi−1

∆x2
+ b

fi+2 − 2fi + fi−2
4∆x2

+c
fi+3 − 2fi + fi−3

9∆x2
+ d

fi+4 − 2fi + fi−4
16∆x2

, (14)

where fi = f(xi) and f ′′i = f ′′(xi) represent discrete approximations of the function
f(x) and its second derivative f ′′(x) at nodes xi = (i − 1)∆x where ∆x is the uniform360

mesh spacing. Such schemes have a so-called quasi-spectral behaviour (Lele, 1992) due
to their capabilities to represent accurately a wide range of scales. A Fourier analysis
for such schemes, for which f(x) and f ′′(x) are decomposed and analysed in the Fourier363

space (f̂ ′′l = −k2f̂l, where f̂l and f̂ ′′l are Fourier coefficients and k2 are the associated
wavenumbers), can provide an effective way to quantify their resolution characteristics
(Lele, 1992). A Fourier analysis of the above scheme yields a modified wavenumber,366

k′′(k) =

2a[1− cos(k∆x)] + b
2
[1− cos(2k∆x)]+

2c
9

[1− cos(3k∆x)] + d
8
[1− cos(4k∆x)]

∆x2[1 + 2α cos(k∆x)]
. (15)

which depends on coefficients (α, a, b, c, d). These coefficients are determined based on a
desired formal accuracy of the second derivative (e.g fourth- or sixth-order accuracy) by
satisfying the following equations in an accumulating order,

a+ b+ c+ d = 1 + 2α (second order) (16a)

a+ 22b+ 32c+ 42d =
4!

2!
α (fourth order) (16b)

a+ 24b+ 34c+ 44d =
6!

4!
α (sixth order) (16c)

a+ 26b+ 36c+ 46d =
8!

6!
α (eight order) (16d)

a+ 28b+ 38c+ 48d =
10!

8!
α (tenth order). (16e)

For example, by satisfying all equations up to (16c) the coefficients are calculated to be
equal to α = 2/11, a = 12/11, b = 3/11 and c = d = 0 and the approximation is sixth-
order accurate (Lele, 1992). The rational here is to obtain the desired accuracy with369

the smallest possible stencil while keeping the implicit character of the scheme, hence
the choice of c = d = 0. Following however Lamballais et al. (2011) a discrete SVV
operator may be constructed by allowing k′′ to mimic the behaviour of the analytical372

model of Karamanos and Karniadakis (2000) for which the extra numerical viscosity can
be expressed as

νSV V (k, kc)

ν0
=


0 if k < 0.3kc

exp

[
−
(

kc−k
0.3kc−k

)2]
if 0.3kc ≤ k ≤ kc,

(17)
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where kc = π/∆x is the mesh cut-off wavenumber. It is possible to customise the finite-
difference scheme 14 to mimic this SVV operator while maintaining a sixth-order accuracy
by satisfying all equations up to (16c). However two more constrains need to be added
to the system of equations at k = km = 2/3kc and k = kc so that

k′′(kc) =

(
1 +

ν0
ν

)
k2c , (18a)

k′′(km) =

(
1 + 0.437

ν0
ν

)
k2m. (18b)

where ν0/ν is set to be the desired ratio between the SVV magnitude ν0 and the back-
ground kinematic viscosity ν. Equations (18a) and (18b) are determined by requiring
−νk′′(k) = −[ν + νSV V (k)]k2 at both k = kc and k = km = 2/3kc. With these two
constraints and to keep a sixth-order accuracy, the set of coefficients for the scheme 14
can be expressed as,

α =
1

2
− 320k′′m∆x2 − 1296

405k′′c∆x2 − 640k′′m∆x2 + 144
(19a)

a = −4329k′′c∆x2/8− 32k′′m∆x2 − 140k′′c∆x2 + 286

405k′′c∆x2 − 640k′′m∆x2 + 144
(19b)

b =
2115k′′c∆x2 − 1792k′′m∆x2 − 280k′′c∆x2 + 1328

405k′′c∆x2 − 640k′′m∆x2 + 144
(19c)

c = −7695k′′c∆x2/8 + 288k′′m∆x2 − 180k′′c∆x2 − 2574

405k′′c∆x2 − 640k′′m∆x2 + 144
(19d)

d =
198k′′c∆x2 + 128k′′m∆x2 − 40k′′c∆x2 − 736

405k′′c∆x2 − 640k′′m∆x2 + 144
, (19e)

where k′′c is the expected value of k′′ at the mesh cut-off wavenumber and k′′m is the375

expected value of k′′ at 2/3 of the mesh cut-off wavenumber.
The resulting discrete “hyper-viscous” operator contains both the SVV and viscous

parts. Thus, the actual behaviour of the discrete SVV operator in the wavenumber space378

can be found only after we separate the viscous part (−νk2), from the hyper-viscous part
−νk′′, and obtain the actual discrete spectral vanishing viscosity ν ′′(k) via

− ν ′′(k)k2 = −ν(k′′ − k2). (20)

A plot of the final discrete SVV operator is shown in figure 3 together with the analytical381

function of Karamanos and Karniadakis (2000). The theoretical “modified” wavenumber
kernel is equal to k′′ = (1 + ν ′′(k)/ν)k2. The discrete SVV kernel is found to be a
satisfactory approximation of the analytical operator of Karamanos and Karniadakis384

(2000) for the whole wavenumber range with only small deviations at the near cut-off
0.75kc < k < kc and half cut-off 0.4kc < k < 0.6kc wavenumbers where only small
differences in the relative magnitude are observed (∼ 10 − 20%). These differences are387

not expected to alter either the quality of our results or our conclusions.
Regarding the filtering operator required by the dynamic Smagorinsky model, a dis-

crete test filter is constructed using compact finite differences. The filtered fluid property390
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Figure (3) Modified wavenumber k′′ and the spectral vanishing viscosity (SVV) kernel for the analytical
operator of Karamanos and Karniadakis (2000) and the proposed operator normalised by the SVV
magnitude ν0.

f̂i is computed with a 3− 9 node stencil,

αf̂i−1 + f̂i + αf̂i+1 = afi +
b

2
(fi+1 + fi−1) +

c

2
(fi+2 (21)

+fi−2) +
d

2
(fi+3 + fi−3),

where the coefficients α, a, b, c, d are set to satisfy sixth-order accuracy which is consistent
with the truncation error of all other spatial discrete operators. Hence, the discrete filter393

coefficients are found to be equal to a = 0.0625(11 + 10α), b = 0.0312532(15 + 34α),
c = −0.0625(3 − 6α), d = 0.03125(1 − 2α), where α ∈ [−0.5, 0.5] is a free user-defined
parameter. In our study we have chosen to use α = 0 to approximate a Gaussian filter396

in the wavenumber space, aiming at an effective filter size equal to ∆̃ ≈ 2∆. Finally, it
is noteworthy that for non-periodic boundaries and for stability reasons, filtering at the
first mesh node is avoided.399

2.6. Energy budget framework

A complete energy budget for gravity currents in the lock-exchange set-up can be
extracted from the governing equations and density transport equation, see Necker et al.402

(2005) and Espath et al. (2014). The energy budget can be used to better understand
gravity currents by investigating the temporal evolution of the potential energy, kinetic
energy and associated energy transfer mechanisms. In the present study, the conceptual405

framework of Winters et al. (1995), based on available and background potential energy
(Lorenz, 1955), is adapted to lock-exchange gravity currents. Such a framework, which
has been widely used for stratified flows (Patterson et al., 2006; Oezgoekmen et al., 2009;408

Fragoso et al., 2013; Ottolenghi et al., 2016a; la Forgia et al., 2018), can distinguish the
stirring (a large-scale reversible process) and mixing (a small-scale irreversible process)
features of a gravity current. As explained in the experimental reference study of Fragoso411

et al. (2013), this approach can explicitly capture the changes in potential energy due
to adiabatic processes, which transport fluid elements without molecular mass or heat
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transfer (stirring), from changes due to diabatic processes (mixing). The energy budget414

will be used for comparison with the experimental work of Fragoso et al. (2013) and to
assess the performance of the LES models.

Overall, the total energy T for the gravity current is equal to417

T (t) = Pa(t) + Pb(t) +K(t) + I(t), (22)

where Pa is the available energy, Pb is the background energy, K is the total kinetic
energy and I is the internal energy. The total potential energy P is defined as

P(t) =

∫
V

[ρ(x1, x2, x3, t)x2]dV, (23)

where the integral is taken over the full computational domain. The background potential420

energy Pb is defined as the minimum potential energy attainable through an adiabatic
redistribution of the density field. It can be expressed as a function of time as

Pb(t) =

∫
V

ρ∗(x1, x2, x3, t)x2dV. (24)

ρ∗(x1, x2, x3, t) is the density field redistributed in the minimal energy state (see as an423

example figure 2 of Fragoso et al. (2013)). In our simulations, Pb is approximated from the
3D density snapshots with the pdf method, sampled with a computationally inexpensive
empirical cumulative distribution function (e.c.d.f.), following an approach introduced by426

Tseng and Ferziger (2001); Oezgoekmen et al. (2009). The available potential energy
Pa is defined as the difference between the total potential energy P and the background
potential energy Pb429

Pa(t) = P(t)− Pb(t), . (25)

Two routes are available for the conversion of available potential energy Pa to background
potential energy Pb. The first route is associated with stirring. The total kinetic energy
K, defined as432

K(t) =
1

2

∫
V

[
u21(x1, x2, x3, t) + u22(x1, x2, x3, t) + u23(x1, x2, x3, t)

]
dV. (26)

can be modified via reversible vertical buoyancy flux, defined as

$(t) =

∫
V

ρ(x1, x2, x3, t)u2(x1, x2, x3, t)dV. (27)

Changes in total kinetic energy K can indeed be associated with changes in dissipation
(the total kinetic energy will eventually be transformed in heat via dissipation), which435

will affect the internal energy and ultimately the background energy via density diffusion.
The total viscous dissipation can be explicitly computed as

ε(t) =
1

Re

∫
V

∂ui(x1, x2, x3, t)

∂xj

∂ui(x1, x2, x3, t)

∂xj
dV, i, j = 1, 2, 3. (28)

while density diffusion can be defined as438

Φ(t) =
1

ReSc

∫
V

x2
∂2ρ(x1, x2, x3, t)

∂x2i
dV i = 1, 2, 3. (29)
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Viscous dissipation and density diffusion are unidirectional energy mechanisms which act
as source and sink of the internal energy, respectively. The internal energy I can be
evaluated as441

I(t) =

∫ t

0

[ε(t)− Φ(t)]dt. (30)

The second route for the conversion of available potential energy Pa to background
potential energy Pb is a direct route, known as irreversible dyapicnal mixing. The term
dyapicnal refers to the fact that mixing is a diffusive process across interfaces of different444

densities (also known as diapycnal surfaces), hence this route is only available in strat-
ified flows as explained in Winters et al. (1995). In the current framework, irreversible
dyapicnal mixing is defined as an irreversible energy transfer mechanism acting towards447

smoothing gradients of ρ (directly increasing the background potential energy Pb). Fol-
lowing the work of Winters et al. (1995), irreversible dyapicnal mixing can be simply
defined as the time derivative of450

%(t) = Ṗb(t). (31)
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Figure (4) New energy budget framework for gravity currents in a lock-exchange set-up.

The energy budget framework is presented in figure 4, with the distribution of energy
among the different terms. Note finally that in the next sections, the energy budget is
normalised by the total potential energy at the start of the simulation P(t = 0) = T (t =453

0).

3. DNS validation against experimental data

The laboratory experiment number 6 of Fragoso et al. (2013) (EX6) has been selected456

as a reference for comparison with the simulations. It consists of a dense solution (with
g′ = 12 cm s−2) made from sugar and water which is placed behind a plastic lock in a
2.4 m× 0.5 m× 0.1 m tank filled with tap water. The domain size for the simulations is459

equal to L1×L2×L3 = 12×1×0.5 whereas the initial reservoir L1,b×L2,b×L3 = 1×1×0.5.
The Reynolds number is equal to 31, 000. It should be noted that in the present set-up
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and reference experiment L2 = L2,b. Only limited experimental data are available for462

comparison with the present simulations: (i) instantaneous spanwise-averaged density
fields at regular time intervals, (ii) the temporal evolution of the front position and
associated front velocity (extracted from the movies provided with the article); (iii) the465

evolution of the dilution based on normalised subareas of specific density thresholds; and
(iv) the evolution of available and background potential energy. Hence, the strategy
here is to first perform a DNS, compare the results with the available experimental468

data and then assess the performance of the LES models with the DNS data. Note
that the Reynolds number in EX6 is large enough for a LES approach and it remains
computationally reachable for a DNS.471

For a DNS, all turbulent scales are supposed to be adequately resolved down to
the mesh level. Such requirement, however, imposes certain restrictions on the spatial
resolution. According to Pope (2000) the mesh spacing for a DNS (in physical space)474

should be ∆x ≈ 2.1ηK where ηK = (ν3/εK)1/4 is the Kolmogorov scale, representative of
the smallest scale in a turbulent flow, where viscosity dominates and the turbulent kinetic
energy is dissipated into heat. In the definition of ηK , εK is considered as the averaged477

rate of dissipation of turbulence kinetic energy per unit mass. Note that the computation
of εK is not straightforward in the context of gravity currents: the flow is transitional,
evolving from a laminar to a highly-turbulent state; there is a significant anisotropy480

due to stratification; the flow is inhomogeneous due to the presence of walls and there
are no homogeneous spatial directions for averaging (except the spanwise direction for
channelised currents). Finally, the recommendation from Pope (2000) did not take into483

account the accuracy of the numerical methods. It is now well-established that, in terms
of accuracy and computational efficiency, the most spectacular gain is obtained using
spectral methods based on Fourier or Chebyshev representation (Canuto et al., 2012).486

In particular, highly accurate finite-difference numerical methods, with quasi-spectral
properties, are desirable in a DNS context due to their ability to provide flexibility for
the boundary conditions (as opposed to purely spectral methods) and accurate results489

with a moderate number of mesh nodes when compared to more conventional low-order
schemes.

In almost all published DNS studies of gravity currents, no estimate of the Kolmogorov492

scale is provided, with usually very little information on mesh requirement for a given
Reynolds number other than a mesh convergence study. Härtel et al. (1997) suggested
that the number of mesh nodes required to achieve adequate resolution depends on the495

steepness of the initial profile for the concentration field at the gate (in a channelised lock-
exchange set-up, see δb in equation 6). The authors also recommended using the same
resolution in the streamwise and vertical directions in the middle of the channel while498

a much more refined mesh is needed close to the bottom wall to allow for an adequate
resolution of the developing boundary layer. Zgheib et al. (2015) justified their spatial
resolution by observing between 4 and 6 decades of decay in the streamwise-spectra of501

particle-volume fraction at various times. They also claimed to have similar decay for
other quantities and vertical-spectra and spanwise-spectra. Similar arguments were used
in Cantero et al. (2007b) to justify the spatial resolution for DNS of axisymmetric gravity504

currents. In Espath et al. (2014, 2015), the authors looked at the energy budget and in
particular at the total energy, which is supposed to be conserved if all the turbulent scales
are modelled properly. If the smallest scales of the flow (the dissipative ones) are not507
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resolved, then an accumulation of energy would appear at the mesh resolution level, and
the total energy would not be conserved. Note that this accumulation of energy would
also be visible on energy spectra.510

The DNS is discretised with n1 × n2 × n3 = 4097× 769× 257 mesh nodes and a time
step of ∆t = 2 × 10−4. Note that the mesh is not refined closed to the bottom wall in
the vertical direction. This spatial resolution has been chosen after a mesh refinement513

study to make sure that the solution is independent of the mesh resolution. Expressed
in wall viscous units, it corresponds to a maximal resolution of ∆x

+
1max
≈ 1,∆x

+
2max
≈ 0.5

and ∆x
+
3max
≈ 1. Those values have been obtained by calculating the maximum value of516

the spanwise-averaged wall shear velocity at each time step. The DNS is performed with
8,192 computational cores on the UK Supercomputing facility ARCHER. The spatial
resolution required to capture the smallest scales of the flow adequately was checked by519

looking at the temporal evolution of the ratio between the spatial resolution and the
largest Kolmogorov scale for each time step, see figure 5. The average rate of dissipation
of turbulence kinetic energy per unit mass εK is evaluated at each time step using the522

following expression

εK =
1

Re

∂u′i
∂xj

∂u′i
∂xj

, i, j = 1, 2, 3 (32)

where the fluctuating velocities u′i have been obtained by removing the spanwise-averaged
mean velocity at each time step. It can be seen in figure 5 that in the vertical direction,525

the condition ∆x2/ηK ≤ 2 is always satisfied while ∆x3/ηK ≤ 3 and ∆x1/ηK ≤ 5 are
satisfied in the spanwise and streamwise directions, respectively. It should be noted that
for more than 90% of the simulation, ∆xi/ηK ≤ 2, and the largest ηK are located in the528

head of the gravity current, at the early stages of the simulations, close to the peak of
total kinetic energy, see figure 15. It is also important to reiterate that the well-know
recommendation from Pope (2000) (∆xi/ηK ≈ 2.1) about resolution requirements does531

not take into account the order of the numerical schemes. High-order schemes such as the
ones used in the present study are able to capture more small scales at a given resolution
than low-order schemes. Figure 5 suggests that the mesh resolution is fine enough to534

take into account the smallest features of the current and a good comparison with the
experimental data can be expected. Furthermore, as an extra check for the resolution
requirement, figure 15a shows that the total energy in the DNS is perfectly conserved,537

confirming that the spatial resolution is adequate for the present study.
Figure 6 shows the evolution of the spanwise-averaged density field at t = 12.4 and

t = 24 for the DNS and EX6. Overall, it can be seen that the experimental current540

and the numerical current are almost identical, with a similar shape, and they seem to
be evolving at the same speed. The well-known Kelvin-Helmholtz billows can clearly be
seen, especially for the DNS. Few differences can be observed at the interface between543

the current and its ambient, with a clearer interface for the experiment. This could be
attributed to the difficulty in the experiment to capture low thresholds for the density
field, as reported in Fragoso et al. (2013). The head of the current is also more pronounced546

in the simulation (darker red) for t = 12.4, suggesting that the current might carry more
energy in the DNS than in the experiment. This can be related to the noisy removal
of the gate in the experiment which might have consumed extra energy. However, the549

opposite trend can be observed for t = 24, with a more diffuse head for the DNS. It might
be related to a more intense mixing activity at the interface for the DNS, which could
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(b) t = 24.

consume more energy than in the experiments.552

To track the evolution of the front position xf (t) in the DNS, a simple reverse search
is performed on the quantity ρ̄ defined as

ρ̄(x1, t) =

∫ L2

0

∫ L3

0

ρ(x1, x2, x3, t)dx2 dx3, (33)

The streamwise position of the front of the current xf (t) is defined as the first posi-555

tion where ρ̄(x1, t) > 0.01 (starting from the end of the computational domain in the
streamwise direction). The associated front velocity uf (t) is evaluated by calculating the
derivative of xf (t) with respect to time. Figure 7a shows the temporal evolution of xf (t)558

for both EX6 and the DNS. The experimental values have been extracted from Fragoso
et al. (2013) by using 32 equally-spaced frames from the video provided with the article.
A specific modulation has been used to make sure that the aspect ratio of the video is561

the same as in the DNS. An excellent agreement between the experiment and the DNS

19



is obtained for the location of the front position. Note that ts corresponds to the end of
the slumping phase and ti to the end of the inertial phase.564
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Figure (7) Temporal evolution of the front position (a) and front velocity (b) for the DNS and EX6. ts
corresponds to the end of the slumping phase and ti to the end of the inertial phase.

The temporal evolution of the front velocity is presented in Figure 7b. For the DNS,
the acceleration phase (in which the current initially at rest reaches its maximum velocity)
peaks at t ≈ 1.5 and is followed by a small deceleration phase up to t ≈ 4. Note that567

the acceleration phase for the experiment cannot be captured properly due to the coarse
temporal resolution from the video and the large perturbations generated by the manual
removal of the gate. After t ≈ 4 and up to ts = 14, both sets of data indicate that the570

front velocity is nearly constant, corresponding to the slumping phase, with uf,s = 0.44.
The front velocity then starts to decrease first at a slow rate (inertial phase, up to t = 21),
then at a fast rate (viscous phase). The current then hit the end of the computational573

domain for the DNS and the wall at the end of the water tank for the experiment for
tw ≈ 27. Overall, numerical and experimental data for the front velocity are in good
agreement with each other. Several theoretical and empirical models have been proposed576

to predict the front velocity during the inertial and viscous phases, where the current
decelerate following power-law decays, with uf ∝ t−α, see Huppert and Simpson (1980);
Cantero et al. (2007b). For the inertia phase, it was suggested that α = 1/3 and for the579

viscous phase that α = 4/5, values recovered here for both numerical and experimental
data as seen in figure 7b.

The dilution of the heavy fluid into the light ambient fluid was carefully investigated582

in Fragoso et al. (2013) by counting over time areas of the current greater than arbitrary
thresholds (using density colour maps for the spanwise-averaged density field). In our
DNS, in a similar fashion to Necker et al. (2005), a subarea Aρ1 , where ρ exceeds a certain585

threshold ρ1, can be defined for the spanwise-averaged density field

Aρ1(t) =

∫
A

(〈ρ(x1, x2, t)〉x3 ≥ ρ1)dA. (34)

Figure 8a shows the temporal evolution of Aρ1/Aρ10 (where Aρ10 = Aρ1(t = 0)) for thresh-
olds ρ1 = 0.02, 0.5, 0.8, 0.92. The initial density field is zero everywhere, except in the588
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to the background potential energy Pb and the green circle symbols to the difference between the two.
Data are normalised so that the minimum total potential energy is zero and the maximum total potential
energy is 1. Time is scaled by ts.

reservoir for which it is equal to 1. In an idealised mixing scenario where the reservoir
and the ambient have the same volume, the density field would eventually be equal to
0.5 everywhere (corresponding to a perfect mixing). It is therefore natural to expect591

Aρ1(t)/Aρ10 to go above/below 1 for thresholds below/above 0.5. In practice, and due to
the lock-exchange set-up in the present work, this might not be exactly the case. It also
should be noted that the error margin is quite large in the experiments due to the diffi-594

culties associated with capturing certain density levels with advanced optical techniques,
as mentioned in Fragoso et al. (2013). Furthermore, the manual removal of the gate in
the experiments is producing more perturbations than its numerical counterpart based597

on a numerical white noise (the reader can have a look at the video of the experiments
provided with the article). It is therefore anticipated that more stirring and mixing would
occur in the experiments soon after removing the gate. As a result, a small time delay600

(intrinsic to the threshold) is expected: large thresholds for Aρ1/Aρ10 will decay earlier
and small thresholds forAρ1/Aρ10 will increase earlier, by comparison to the simulations.
Thresholds around 0.5 should not be affected.603

A convincing agreement between the experimental and numerical data can be observed
for the threshold 0.5. As expected, the large experimental thresholds for Aρ1/Aρ10 are
decaying earlier than the ones in the simulation, however the rate of decay for both the606

experiment and the simulation are the same for ρ1 = 0.8 and ρ1 = 0.92. It confirms
that without a noisy removal of the gate in the experiment or with a noisier artificial
perturbation in the simulation, the blue and yellow lines would be on top of the blue and609

yellow symbols. For the lowest threshold, the agreement between the experiment and
the simulation is not so good which confirm that capturing properly very low thresholds
in the experiment is challenging due to margin of error of the camera, as mentioned612

by Fragoso et al. (2013). The present results also confirm that accurate measurements
of mixing cannot rely on density threshold methods alone and must include an integral
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method, such as rearranged potential energy, to characterise the evolution of a continuous615

density field, in agreement with the findings of Fragoso et al. (2013).
Figure 8b compares the time evolution of total, available and background energy for

EX6 and the DNS. For this figure, each term is normalised so that the minimum total618

potential energy is zero and the maximum total potential energy is 1, while the time is
scaled by the time required to reach the slumping distance. The DNS is able to capture
the initial strong decay of available energy, up to t/ts ≈ 0.3, followed by a more moderate621

decay afterwards where the DNS over-predicts the available energy by comparison to the
experiment, with a 15% to 25% difference. It suggests that the noisy removal of the
gate in the experiment might have consumed a fair amount of available energy, hence the624

lowest values reported in the experiment after t/ts ≈ 0.5. Further investigations would be
needed to confirm this point. More details about the behaviour of Pa and Pb is provided
in the next section.627

Overall, the DNS is able to capture accurately the main features of the gravity current,
with a good agreement with the experiment EX6 of Fragoso et al. (2013), except for the
temporal evolution of low and high density thresholds. In the following, the DNS will be630

used as a reference to evaluate the performance of the LES models.

4. LES results

The present study aims to assess the ability of LES to reproduce the main features633

of a high-Reynolds number gravity current in a channelised lock-exchange set-up, at a
fraction of the cost of the DNS. In this section, several LES are performed, with the
standard Smagorinsky model (SSM), with the dynamic Smagorinsky model (DSM) and636

with the SVV model based on high-order finite-difference schemes. The spatial resolution
of the LES has been chosen to be as small as possible while making sure that the LES
are stable without any numerical artefact (no limiters to constrain the density field to639

values between 0 and 1 or filtering procedures to remove numerical oscillations are used
in the present LES). The spatial resolution for the LES is n1 × n2 × n3 = 577× 201× 24
mesh nodes, a reduction of more than a factor 7, 3.8 and 10 in the streamwise, vertical642

and spanwise directions, respectively, by comparison to the DNS data. Expressed in wall
viscous units, it corresponds to a maximal resolution of ∆x

+
1max

≈ 10/15,∆x
+
2max

≈ 2
and ∆x

+
3max

≈ 10/15. Those values have been obtained by calculating the maximum645

value of the spanwise-averaged wall shear velocity at each time step. They are in line
with the recommendations of Pelmard et al. (2018) who suggested that the first off-wall
mesh node should lie in the viscous sublayer of the current at the bottom wall. The648

streamwise and spanwise values are much smaller than the values reported in Ottolenghi
et al. (2016a) (∆x

+
1max

≈ 50,∆x
+
2max

≈ 1 and ∆x
+
3max

≈ 20). For consistency, the same
small time step is used for the DNS and the LES so that temporal discretisation errors651

are negligible. It means that the present LES are about 275 times cheaper than the DNS.
The first important result is that the SSM LES and DSM LES are 1.8 and 2.5 times more
expensive than the SVV model, respectively, as the latter does not require any explicit654

terms in the Navier-Stokes equations nor filtering.
As described in 2.4, the SVV model relies on a physical scaling of the numerical

dissipation introduced when evaluating the viscous term of the Navier-Stokes equations.657

To estimate the physical scaling of ν0/ν, the strategy proposed by Dairay et al. (2017) has
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Figure (9) Isocontours of the Q-criterion (Q = 50 in green) and the density field ρ = 0.1 (pink) at
t = 15. From top to bottom: DNS, SVV60, SSM and DSM.

been used. It is based on a Pao-like spectral closure established on physical arguments to
scale the numerical viscosity. With the current mesh resolution, the theoretical prediction660

of the scaling is ν0/ν = 60 (simulation SVV60). It should be noted that this estimate
was designed for homogeneous isotropic turbulence; hence the theoretical prediction of
this scaling might not be accurate for gravity currents (stratified transitional flows in the663

presence of a wall). A sensitivity analysis is presented in Appendix A. It can be seen
that for the range of ν0/ν investigated, the quality of the results does not change much
when compared to the DNS data of reference.666

4.1. Instantaneous data

In figure 9 iso-contours of Q−criterion = 50 and of ρ = 0.01 are presented for t = 15,
when the current has reached a fully turbulent state. As expected, a wider range of669

turbulent scales can be observed for the DNS, with very fine vortices at the head of the
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Figure (10) 2D visualisations of the spanwise averaged density field at t = 24: (a) DNS, (b) SVV60,
(c) SSM, (d) DSM

current and at the interface between the heavy fluid and the lighter fluid. The LES do
not produce obvious spurious oscillations, except close to the heavy/light fluid interface672

for the explicit models (SSM and DSM) for x1 ≈ 3, 4.5 and x1 ≈ 6.5. At these locations,
the streamwise-orientated elongated structures are not as well defined as for the SVV
model due to the presence of small non-physical oscillations. The head of the current for675

the DSM is further ahead than the one in the DNS. For the two explicit LES, the tail
of the current (where vortical structures are no longer observable) seems to be further
downstream from the inlet than in the SVV LES and DNS.678

The spanwise-averaged density field at t = 24 is presented in figure 10. It can be
seen that the current for the DSM is indeed travelling faster than the current in the DNS
while the current in the SSM is travelling slower than the current in the DNS. The LES681

seems to be able to reproduce properly the main features of the current, in particular
the characteristic Kelvin-Helmholtz vortices generated at the head of the current and
convected upstream at the heavy/light fluid interface. Furthermore, there seems to be684

a good agreement between the LES and DNS regarding the different colour thresholds
representing different density values.

The friction velocity and associated wall shear stress can be used in a simulation to687

estimate the critical shear stress level beyond which incipient motion can occur. Such
an approach, first introduced by Shields (1936), is based on a similarity method for
sediment process, yielding to the Shields diagram. It remains the most widely used690

strategy to estimate the potential for incipient motion of particles and has been applied
in several experimental and numerical works Yalin and Karahan (1979); Ooi et al. (2009);
Julien (2010); Tokyay et al. (2012); Tokyay and Constantinescu (2015); Nasr-Azadani and693

Meiburg (2014); la Forgia et al. (2020). It should be noted however that incipient motion
is very often neglected as the configurations studied in laboratory experiments and via
high-fidelity simulations cannot replicate the erosion process observed in real-life currents696

due to the limitation in the Reynolds number. The correct reproduction of the friction
velocity is nevertheless an interesting (and challenging to reproduce) quantity of interest
to assess the quality of LES models. 2D maps of the friction velocity u∗ are presented in699
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Figure (11) 2D friction velocity maps at t = 24: (a) DNS, (b) SVV60, (c) SSM, (d) DSM

figure 11 for t = 24. The friction velocity is defined as

u∗ =
√
τw with τw =

1

Re

√(∂u1
∂x2

)2
+
(∂u3
∂x2

)2∣∣∣
x2=0

. (35)

According to figure 11, the best agreement for the friction velocity is obtained for the
SVV model, followed by the DSM. The SSM is not able to capture the high values of702

the friction velocity at the head of the current. It can be connected to a high-level of
numerical dissipation at the bottom of the channel. Non-uniformities are observed at the
head of the current, a signature of the well-known lobe-and-cleft structures, characterised705

with intense friction velocities with a streaky pattern (dark blue in the figure). These
imprints cannot be captured properly by the SSM.

The formation, merging and meandering of the lobe-and-cleft structures at the front708

of the current can be seen in figure 12 with iso-lines of the bottom wall density field
(ρ = 0.01). These structures arise from an instability produced by the ambient fluid,
which is overrun by the heavy fluid, and it is one of the main features of gravity currents.711

As expected, the DNS generates a wider range of lobe-and-cleft structures, with more
merging and meandering by comparison to the LES. It seems that less splitting and
merging events are present for the explicit LES models as for the SVV model. It is714

consistent with the overly dissipative behaviour reported in figure 11 for the friction
velocity.

4.2. Averaged data717

The temporal evolution of the front position and front velocity for the LES is presented
in figure 13. As already hinted with the instantaneous visualisation of the current in the
previous sub-section, it can be seen that the SSM and DSM are not able to accurately720

capture the correct location of the front position after the slumping phase. The SVV
model is able to capture perfectly the location of the front. The SSM is underestimating
the front location, with a deviation from the DNS data starting at the end of the slumping723

phase. The DSM is slightly overestimating the front location after the slumping phase,
in line with the results of Ottolenghi et al. (2016b). Note that an excellent agreement
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Figure (12) Temporal evolution of the isolines of the bottom wall density field (ρ = 0.01) for (a) DNS,
(b) SVV60, (c) SSM, (d) DSM.

between LES and experiments for the front location was reported in Ottolenghi et al.726

(2018) but only for very low Reynolds numbers. Despite this minor discrepancy for the
SSM, explicit LES models are more or less able to capture the power-law decays when
the current is slowing down, after the slumping phase (the front velocity for the DSM is729

just slightly higher than the DNS one and it is lower for the SSM).
Figure 14a shows the temporal evolution of the dilution of the heavy fluid into the

ambient fluid by using the same thresholds used in the experiment of Fragoso et al. (2013),732

see figure 8. It can be seen that all the LES are able to match the DNS data of reference,
especially for high thresholds. For the lowest threshold of 0.02, it seems that the DSM
is in slightly better agreement with the DNS, while the dilution for the SVV model and735

SSM is marginally faster for ρ1 = 0.02.
Figure 14b shows the temporal evolution of the total mass expressed as

ms(t) =

∫
V

ρ(x1, x2, x3, t)dV. (36)

It can be seen that all the LES models are capable of conserving the total mass with738

high accuracy, within less than 0.05%. It suggests that the LES models do not introduce
large spurious oscillations to the current. For the explicit LES models, a small amount
of mass is numerically created soon after the release of the heavy fluid, up to t = 10 for741

the DSM and up to t = 20 for the SSM. For the DSM, mass is removed from the current
from t = 10 onward while the mass is more or less conserved for the SSM and the SVV
model. It suggests that the DSM might have an under-dissipative behaviour at the start744

of the simulation (with a fast-moving current) and an over-dissipative behaviour when
the current is fully established.
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Figure (13) Temporal evolution of the front position (a) and front velocity (b) for the various LES.
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global mass (b) for the DNS and the LES.

The total energy budget is presented in figure 15a while the temporal evolution of the747

energy transfer mechanisms (vertical buoyancy flux and mixing) is presented in figure
15b. In order to account for the numerical dissipation, the calculation of the internal
energy needs to be modified as follow750

I(t) =

∫ t

0

[ε(t)− Φ(t)]dt+ ILES. (37)

Following a strategy introduced in Sun and Domaradzki (2018), ILES, which accounts
for contribution of the numerical dissipation to the dissipation rate, can be evaluated as
a residual753

ILES(t) = T (t = 0)− T (t). (38)

The main assumption of this approach is that the energy is perfectly conservation for the
LES. In the DNS, ILES(t) is of course equal to zero (which is the case in our DNS).
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It can be seen in figure 15 that at the very early stage of the simulations, there is a756

swift drop of available potential energy Pa, up to t ≈ 4, associated with a rapid increase
of total kinetic energy K. This rapid increase is produced by a strong vertical buoyancy
flux $ as shown in figure 15b. Over 50% of the available potential energy is transferred759

into total kinetic energy. It corresponds to the important amount of energy used by
the current to establish itself following the removal of the gate. Very little irreversible
dyapicnal mixing %, defined as an irreversible energy transfer mechanism acting towards762

smoothing the density field, is occurring at the start of the simulations, which is consistent
with a quasi-steady background energy (only diabatic mixing can produce changes in the
background state, see Winters et al. (1995)).765

After the peak of total kinetic energy, the available potential energy and total ki-
netic energy exhibit a steady decay, associated with an increase in internal energy and
background potential energy associated with a sustained mixing activity (with % nearly768

constant). The vertical buoyancy flux $ and viscous dissipation ε are steadily decreasing
after the total kinetic energy peak, while the density diffusion Φ is increasing and the
irreversible dyapicnal mixing % is more or less steady. The small increase in available771

potential energy and the sudden decrease in total kinetic energy at the end of the simula-
tions are linked to the current reaching the end of the computational domain for t ≈ 27.
By the end of the simulation, the available potential energy is as low as 10% of its ini-774

tial value. Most of the available potential energy has been converted as internal energy
(more than 50%). The main mechanism of transfer of energy is the vertical buoyancy
flux, which is more or less two orders of magnitude larger than the density diffusion, one777

order of magnitude larger than the irreversible dyapicnal mixing, and much larger than
the viscous dissipation.

Overall, all the LES are able to reproduce the energy budget and the evolution of780

the transfer mechanisms obtained in the DNS, with only minor differences such as an
over-estimation of the internal energy for the SSM model of about 10− 15%, associated
with a slight under-prediction of the total kinetic energy of about 5 − 10%. It is a783

confirmation that the SSM is possibly too dissipative (ILES is much larger for the SSM
than for the DSM), especially in high shear/low turbulence regions. The DSM and SVV
model have a consistent behaviour, with a similar amount of numerical dissipation added786

to the current and only a marginal over-estimation of the internal energy for the DSM
with respect to the DNS. As expected, the viscous dissipation ε is under-predicted in the
LES by comparison to the DNS as ε is computed with first order derivatives for which789

there is no added numerical dissipation. ε is slightly more under-predicted for the SSM
than for the DSM and SVV model. The LES seem to be able to capture accurately
the available and background potential energy from the DNS. A similar observation was792

already reported in Oezgoekmen et al. (2009) where the background potential energy
was used to assess the performance of 6 different LES models for lock-exchange gravity
currents. A small peak of insignificant importance for the dynamic of the current (two795

order of magnitude small than the vertical buoyancy flux $) can be observed in for %
and Φ at t ≈ 3. This peak is over-estimated in the LES by comparison to the DNS,
especially for the DSM, however with virtually no impact on the temporal evolution of798

the energy transfer mechanisms after the peak (confirmed by the good agreement with
the DNS data).
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5. Conclusions801

In this numerical study, high-fidelity simulations of a gravity current in the lock-
exchange set-up have been performed and compared with experimental data. The po-
tential of using a high-order finite-difference SVV approach in the context of LES was804

investigated with a detailed comparison with more conventional LES based on explicit
SGS model and with a resolved DNS. The DNS was performed with more than 800 mil-
lion mesh nodes and is to the best of our knowledge, one of the DNS of gravity currents807

in a lock-exchange set-up with the highest Reynolds number. The LES were performed
with only less than 0.4% of the total number of mesh nodes of the DNS. An original
energy framework was introduced to better understand the main features of the gravity810

currents.
The main conclusion is that all LES models are good enough to reproduce the main

features of the gravity currents, with, however, slightly better performance for the SVV813

model, in particular close to the bottom of the channel. It should be noted that the SVV
model does not require any filtering nor the computation of extra terms in the Navier-
Stokes equations, making it very competitive in terms of computational cost (the SSM and816

DSM are 1.8 and 2.5 times more expensive than the SVV model, respectively). The SVV
model is therefore up-and-coming for future high-fidelity simulations of gravity currents
at much higher Reynolds numbers, with the potential to reach real-life parameters.819

Our next study will focus on high-fidelity simulations of high Reynolds numbers
Boussinesq gravity currents, thanks to the flow solver QuasIncompact3D, part of the
Xcompact3d framework. This solver is based on the compressible Navier-Stokes equations822

in the low Mach number limit, allowing simulations of gravity currents with densities ra-
tio of up to 10 between the heavy release and the ambient fluid (Bartholomew and Laizet,
2019). High Reynolds numbers non-Boussinesq gravity currents in a basin set-up (where825

the current can freely evolve in the spanwise and streamwise directions, see Francisco
et al. (2018)) will also be investigated.
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It could also be of interest to investigate the potential of the present SVV model for828

turbulent flows where the mixing aspect is dominant, such as turbulent flows induced
by Rayleigh-Taylor instabilities (Zhou, 2017a,b; Zhou et al., 2019). A two-phase flow
solver based on the Allen-Cahn phase-field approach is currently under development831

within the Xcompact3D framework, as an extension of the existing QuasIncompact3D flow
solver. This will allow us to study turbulent mixing induced by hydrodynamic instabilities
such as the Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instabilities with834

potential applications in astrophysics, geophysics, and other engineering flows of both
scientific interest and practical significance.

Appendix A. Sensitivity study for the SVV model837
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Figure (A.16) 2D visualisations of the spanwise averaged density field at t = 24 for the DNS and
SVV45, SVV60 and SVV75.

To investigate the sensitivity of ν0/ν for the present lock-exchange set-up, five extra
LES have been performed with ν0/ν ranging from 15 to 90, with increment of 15 (sim-
ulations SVV15 to SVV90). Figure A.16 shows spanwise-averaged visualisations of the840

density field at t = 24 for SVV45, SVV60 and SVV75. Overall, an excellent agreement
with the DNS data of reference can be seen with very little difference when the numerical
dissipation is changed. No spurious oscillations can be observed suggesting that enough843

numerical dissipation is added at small scales, even for SVV45. It should be noted that
no numerical artefact is applied to the density field (no filtering nor limiters).

The front location and front velocity for the various SVV simulations are in excellent846

agreement with the DNS data of reference, as seen in figure A.17. Actually, all the SVV
simulations are in better agreement with the DNS data than the explicit LES models.
It is another evidence that the SVV model is not sensitive to ν0/ν, as long as enough849

numerical dissipation is added to the flow.
Figure A.18a compares the temporal evolution of the dilution of the current for four

thresholds, in a similar fashion to figure 14a. Once again, it can be seen that changing852

ν0/ν does not affect the dilution of the heavy fluid in the ambient fluid. All the SVV
models are in excellent agreement with the DNS data of reference, except maybe for the
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Figure (A.17) Temporal evolution of the front position (a) and front velocity (b) for the DNS and the
various LES based on the SVV approach.

lowest threshold ρ1 = 0.02 for which all the SVV models are marginally under-predicting855

the DNS data, with a slightly faster decay rate. The same observation can be drawn for
the global mass which is perfectly conserved within 0.5%. It is, however clear that SVV15
is the simulation with the less accurate results. For the range of numerical dissipation858

considered here, the gravity current shows low sensitivity to the choice of ν0/ν. The small
discrepancies in figure A.18 can be attributed to discretisation errors.

Overall, the method proposed by Dairay et al. (2017) to estimate the physical scaling861

of ν0/ν seems to be perfectly capable of providing an adequate value numerical dissipation
for the SVV model, even if it is designed for homogeneous isotropic turbulence. Another
important observation is that adding too much numerical dissipation does not seem to864

affect the quality of the solution. It will however affect the stability of the simulation.
The use of high values for ν0/ν would require very small time steps because of the stability
limit ν∆t/∆x2 < σr/(ν0/ν)π2 (with for instance σr = 2.5 for a third-order Runge-Kutta867

scheme, see Lamballais et al. (2011)).
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