2,446 research outputs found

    QCD thermodynamics with nonzero chemical potential at Nt=6N_t=6 and effects from heavy quarks

    Full text link
    We extend our work on QCD thermodynamics with 2+1 quark flavors at nonzero chemical potential to finer lattices with Nt=6N_t=6. We study the equation of state and other thermodynamic quantities, such as quark number densities and susceptibilities, and compare them with our previous results at Nt=4N_t=4. We also calculate the effects of the addition of the charm and bottom quarks on the equation of state at zero and nonzero chemical potential. These effects are important for cosmological studies of the early Universe.Comment: 27 pages, 17 figures. Some small text and figure change

    String Breaking in Non-Abelian Gauge Theories with Fundamental Matter Fields

    Get PDF
    We present clear numerical evidence for string breaking in three-dimensional SU(2) gauge theory with fundamental bosonic matter through a mixing analysis between Wilson loops and meson operators representing bound states of a static source and a dynamical scalar. The breaking scale is calculated in the continuum limit. In units of the lightest glueball we find rbmG13.6r_{\rm b} m_G\approx13.6. The implications of our results for QCD are discussed.Comment: 4 pages, 2 figures; equations (4)-(6) corrected, numerical results and conclusions unchange

    Dimensional Reduction, Hard Thermal Loops and the Renormalization Group

    Full text link
    We study the realization of dimensional reduction and the validity of the hard thermal loop expansion for lambda phi^4 theory at finite temperature, using an environmentally friendly finite-temperature renormalization group with a fiducial temperature as flow parameter. The one-loop renormalization group allows for a consistent description of the system at low and high temperatures, and in particular of the phase transition. The main results are that dimensional reduction applies, apart from a range of temperatures around the phase transition, at high temperatures (compared to the zero temperature mass) only for sufficiently small coupling constants, while the HTL expansion is valid below (and rather far from) the phase transition, and, again, at high temperatures only in the case of sufficiently small coupling constants. We emphasize that close to the critical temperature, physics is completely dominated by thermal fluctuations that are not resummed in the hard thermal loop approach and where universal quantities are independent of the parameters of the fundamental four-dimensional theory.Comment: 20 pages, 13 eps figures, uses epsfig and pstrick

    Quark Matter and Nuclear Collisions: A Brief History of Strong Interaction Thermodynamics

    Full text link
    The past fifty years have seen the emergence of a new field of research in physics, the study of matter at extreme temperatures and densities. The theory of strong interactions, quantum chromodynamics (QCD), predicts that in this limit, matter will become a plasma of deconfined quarks and gluons -- the medium which made up the early universe in the first 10 microseconds after the big bang. High energy nuclear collisions are expected to produce short-lived bubbles of such a medium in the laboratory. I survey the merger of statistical QCD and nuclear collision studies for the analysis of strongly interacting matter in theory and experiment.Comment: 24 pages, 14 figures Opening Talk at the 5th Berkeley School on Collective Dynamics in High Energy Collisions, LBNL Berkeley/California, May 14 - 18, 201

    Meson Correlation Function and Screening Mass in Thermal QCD

    Full text link
    Analytical results for the spatial dependence of the correlation functions for all meson excitations in perturbative Quantum Chromodynamics, the lowest order, are calculated. The meson screening mass is obtained as a large distance limit of the correlation function. Our analysis leads to a better understanding of the excitations of Quark Gluon Plasma at sufficiently large temperatures and may be of relevance for future numerical calculations with fully interacting Quantum Chromodynamics.Comment: 11 page

    Real-time Chern-Simons term for hypermagnetic fields

    Full text link
    If non-vanishing chemical potentials are assigned to chiral fermions, then a Chern-Simons term is induced for the corresponding gauge fields. In thermal equilibrium anomalous processes adjust the chemical potentials such that the coefficient of the Chern-Simons term vanishes, but it has been argued that there are non-equilibrium epochs in cosmology where this is not the case and that, consequently, certain fermionic number densities and large-scale (hypermagnetic) field strengths get coupled to each other. We generalise the Chern-Simons term to a real-time situation relevant for dynamical considerations, by deriving the anomalous Hard Thermal Loop effective action for the hypermagnetic fields, write down the corresponding equations of motion, and discuss some exponentially growing solutions thereof.Comment: 13 page

    Layered Higgs Phase as a Possible Field Localisation on a Brane

    Full text link
    So far it has been found by using lattice techniques that in the anisotropic five--dimensional Abelian Higgs model, a layered Higgs phase exists in addition to the expected five--dimensional one. The exploration of the phase diagram has shown that the two Higgs phases are separated by a phase transition from the confining phase. This transition is known to be first order. In this paper we explore the possibility of finding a second order transition point in the critical line which separates the first order phase transition from the crossover region. This is shown to be the case only for the four--dimensional Higgs layered phase whilst the phase transition to the five--dimensional broken phase remains first order. The layered phase serves as the possible realisation of four--dimensional spacetime dynamics which is embedded in a five--dimensional spacetime. These results are due to gauge and scalar field localisation by confining interactions along the extra fifth direction.Comment: 1+15 pages, 12 figure

    Design of the Spitzer Space Telescope Heritage Archive

    Get PDF
    It is predicted that Spitzer Space Telescope’s cryogen will run out in April 2009, and the final reprocessing for the cryogenic mission is scheduled to end in April 2011, at which time the Spitzer archive will be transferred to the NASA/IPAC Infrared Science Archive (IRSA) for long-term curation. The Spitzer Science Center (SSC) and IRSA are collaborating to design and deploy the Spitzer Heritage Archive (SHA), which will supersede the current Spitzer archive. It will initially contain the raw and final reprocessed cryogenic science products, and will eventually incorporate the final products from the Warm mission. The SHA will be accompanied by tools deemed necessary to extract the full science content of the archive and by comprehensive documentation
    corecore