1,775 research outputs found

    Effects of a Thermal Bath of Photons on Embedded String Stability

    Full text link
    We compute the corrections of thermal photons on the effective potential for the linear sigma model of QCD. Since we are interested in temperatures lower than the confinement temperature, we consider the scalar fields to be out of equilibrium. Two of the scalar field are uncharged while the other two are charged under the U(1) gauge symmetry of electromagnetism. We find that the induced thermal terms in the effective potential can stabilize the embedded pion string, a string configuration which is unstable in the vacuum. Our results are applicable in a more general context and demonstrate that embedded string configurations arising in a wider class of field theories can be stabilized by thermal effects. Another well-known example of an embedded string which can be stabilized by thermal effects is the electroweak Z-string. We discuss the general criteria for thermal stabilization of embedded defects.Comment: 6 pages, formatting changed, a few typos correcte

    Unconventional cosmology on the (thick) brane

    Full text link
    We consider the cosmology of a thick codimension 1 brane. We obtain the matching conditions leading to the cosmological evolution equations and show that when one includes matter with a pressure component along the extra dimension in the brane energy-momentum tensor, the cosmology is of non-standard type. In particular one can get acceleration when a dust of non-relativistic matter particles is the only source for the (modified) Friedman equation. Our equations would seem to violate the conservation of energy-momentum from a 4D perspective, but in 5D the energy-momentum is conserved. One could write down an effective conserved 4D energy-momentum tensor attaching a ``dark energy'' component to the energy-momentum tensor of matter that has pressure along the extra dimension. This extra component could, on a cosmological scale, be interpreted as matter-coupled quintessence. We comment on the effective 4D description of this effect in terms of the time evolution of a scalar field (the 5D radion) coupled to this kind of matter.Comment: 9 pages, v2. eq.(17) corrected, comments on effective theory change

    String Breaking in Non-Abelian Gauge Theories with Fundamental Matter Fields

    Get PDF
    We present clear numerical evidence for string breaking in three-dimensional SU(2) gauge theory with fundamental bosonic matter through a mixing analysis between Wilson loops and meson operators representing bound states of a static source and a dynamical scalar. The breaking scale is calculated in the continuum limit. In units of the lightest glueball we find rbmG13.6r_{\rm b} m_G\approx13.6. The implications of our results for QCD are discussed.Comment: 4 pages, 2 figures; equations (4)-(6) corrected, numerical results and conclusions unchange

    Using Hubble Space Telescope Imaging of Nuclear Dust Morphology to Rule Out Bars Fueling Seyfert Nuclei

    Get PDF
    If AGN are powered by the accretion of matter onto massive black holes, how does the gas in the host galaxy lose the required angular momentum to approach the black hole? Gas easily transfers angular momentum to stars in strong bars, making them likely candidates. Although ground-based searches for bars in active galaxies using both optical and near infrared surface brightness have not found any excess of bars relative to quiescent galaxies, the searches have not been able to rule out small-scale nuclear bars. To look for these nuclear bars we use HST WFPC2-NICMOS color maps to search for the straight dust lane signature of strong bars. Of the twelve Seyfert galaxies in our sample, only three have dust lanes consistent with a strong nuclear bar. Therefore, strong nuclear bars cannot be the primary fueling mechanism for Seyfert nuclei. We do find that a majority of the galaxies show an spiral morphology in their dust lanes. These spiral arms may be a possible fueling mechanism.Comment: To be published in the Astronomical Journal, June 1999. 25 pages and 14 figures. Full resolution figures are available at ftp://www.ciw.edu/pub/mregan/fullfigs.tar.g

    Q-ball Formation through Affleck-Dine Mechanism

    Get PDF
    We present the full nonlinear calculation of the formation of a Q-ball through the Affleck-Dine (AD) mechanism by numerical simulations. It is shown that large Q-balls are actually produced by the fragmentation of the condensate of a scalar field whose potential is very flat. We find that the typical size of a Q-ball is determined by the most developed mode of linearized fluctuations, and almost all the initial charges which the AD condensate carries are absorbed into the formed Q-balls, whose sizes and the charges depend only on the initial charge densities.Comment: 4 pages, RevTex, 3 postscript figures included, the published versio

    Stellar kinematics in double-barred galaxies: the sigma-hollows

    Full text link
    We present SAURON integral-field stellar velocity and velocity dispersion maps for four double-barred early-type galaxies: NGC2859, NGC3941, NGC4725 and NGC5850. The presence of the inner bar does not produce major changes in the line-of-sight velocity, but it appears to have an important effect in the stellar velocity dispersion maps: we find two sigma-hollows of amplitudes between 10 and 40 km/s on either side of the center, at the ends of the inner bars. We have performed numerical simulations to explain these features. Ruling out other possibilities, we conclude that the sigma-hollows are an effect of the contrast between two kinematically different components: the high velocity dispersion of the bulge and the more ordered motion (low velocity dispersion) of the inner bar.Comment: 5 pages, 2 figures. Accepted for publication in ApJ Letter

    Large Scale Inhomogeneities from the QCD Phase Transition

    Full text link
    We examine the first-order cosmological QCD phase transition for a large class of parameter values, previously considered unlikely. We find that the hadron bubbles can nucleate at very large distance scales, they can grow as detonations as well as deflagrations, and that the phase transition may be completed without reheating to the critical temperature. For a subset of the parameter values studied, the inhomogeneities generated at the QCD phase transition might have a noticeable effect on nucleosynthesis.Comment: 15 LaTeX pages + 6 PostScript figures appended at the end of the file, HU-TFT-94-1

    Q-ball formation in the gravity-mediated SUSY breaking scenario

    Get PDF
    We study the formation of Q-balls which are made of flat directions that appear in the supersymmetric extension of the standard model in the context of gravity-mediated supersymmetry breaking. The full non-linear calculations for the dynamics of the complex scalar field are made. Since the scalar potential in this model is flatter than \phi^2, we have found that fluctuations develop and go non-linear to form non-topological solitons, Q-balls. The size of a Q-ball is determined by the most amplified mode, which is completely determined by the model parameters. On the other hand, the charge of Q-balls depends linearly on the initial charge density of the Affleck-Dine (AD) field. Almost all the charges are absorbed into Q-balls, and only a tiny fraction of the charges is carried by a relic AD field. It may lead to some constraints on the baryogenesis and/or parameters in the particle theory. The peculiarity of gravity-mediation is the moving Q-balls. This results in collisions between Q-balls. It may increase the charge of Q-balls, and change its fate.Comment: 9 pages, RevTex, 11 postscript figures included, to appear in Phys. Rev.

    Q-ball formation: Obstacle to Affleck-Dine baryogenesis in the gauge-mediated SUSY breaking ?

    Get PDF
    We consider the Affleck-Dine baryogenesis comprehensively in the minimal supersymmetric standard model with gauge-mediated supersymmetry breaking. Considering the high temperature effects, we see that the Affleck-Dine field is naturally deformed into the form of the Q ball. In the natural scenario where the initial amplitude of the field and the A-terms are both determined by the nonrenormalizable superpotential, we obtain only very a narrow allowed region in the parameter space in order to explain the baryon number of the universe for the case that the Q-ball formation occurs just after baryon number production. Moreover, most of the parameter sets suited have already been excluded by current experiments. We also find new situations in which the Q-ball formation takes place rather late compared with baryon number creation. This situation is more preferable, since it allows a wider parameter region for naturally consistent scenarios, although it is still difficult to realize in the actual cosmological scenario.Comment: 27 pages, RevTeX, 21 postscript figures included. The version to be publishe

    Flavour physics constraints in the BMSSM

    Full text link
    We study the implications of the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM to flavour physics observables. We identify the constraints of flavour physics on the parameters of the BMSSM when we: a) focus on a region of parameters for which electroweak baryogenesis is feasible, b) use a CMSSM-like parametrization, and c) consider the case of a generic NUHM-type model. We find significant differences as compared to the standard MSSM case.Comment: 22 pages, 7 figure
    corecore