5 research outputs found

    Second hand smoke and COPD: lessons from animal studies

    No full text
    Cigarette smoke exposure is the key initiator of chronic inflammation, alveolar destruction, and the loss of alveolar blood vessels that lead to the development of chronic obstructive pulmonary disease (COPD) which is comprised of emphysema and chronic bronchitis. Exposure to secondhand smoke (SHS) is the major risk factor for non-smokers to develop emphysema. While the first-hand smoke is directly inhaled by smokers, passive smoking occurs when non-smokers are involuntary exposed to environmental tobacco smoke also known as second hand smoke (SHS). SHS is a mixture of 2 forms of smoke that come from burning tobacco: side stream smoke (smoke that comes from the end of a lit cigarette, pipe, or cigar) and mainstream smoke (smoke that is exhaled by a smoker). These two types of smoke have basically the same composition, however in SHS many toxic components are more concentrated than in first-hand smoke, therefore more hazardous for peopleā€™s health. Several pathological events have been implicated in the development of SHS-induced COPD, but many aspects of this pathology remain poorly understood halting the development of new advanced treatments for this detrimental disease. In this respect we have welcomed leading investigators in the field to share their research findings and provide their thoughts regarding the mechanisms of the SHS exposure-induced immune responses and inflammatory mechanisms of lung destruction in SHS-induced COPD and related comorbidities

    New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis

    No full text
    In spite of treatment, severe angioproliferative pulmonary arterial hypertension (PAH) remains a disease characterized by great morbidity and shortened survival. New treatment strategies for patients with PAH are needed, and after drug development, preclinical studies are best conducted in animal models which present with pulmonary angio-obliterative disease and right heart failure. A rat model of severe pulmonary hypertension and right heart failure, described a decade ago, continues to be investigated and provide insight into the nature of the lung vascular lesions and mechanisms of cardiac adaptation to an altered lung circulation. This rat model is based on the combination of VEGF receptor blockade with Su5416 and chronic hypoxia; use of this pulmonary hypertension induction strategy led to developing the concept of apoptosis-dependent compensatory vascular cell growth. Although, often employed in experimental designs, chronic hypoxia is not necessary for the development of angio-obliterative pulmonary hypertension. Left pneumonectomy combined with Su5416 also results in severe pulmonary hypertension in normoxic conditions. Similarly, the immune insufficiency component of severe PAH can be modeled in athymic rats (lacking T-lymphocytes). In these rats housed under normoxic conditions, treatment with the VEGFR receptor blocker results in angioproliferative pulmonary hypertension; cardiopulmonary disease in these animals can be prevented by immune reconstitution of regulatory T-cells (Tregs). Finally, chronic hypoxia can be replaced with another stimulator of HIF-1Ī±: Ovalbumin (Ova). Immunization of rats with Ova increases lung tissue HIF-1Ī± protein expression, and in Su5416-treated rats causes lethal pulmonary hypertension. Finally, we postulate that these models may also be useful for ā€œreverse translationā€; that is, the mechanisms of lung vascular cell death and growth and the modifying influences of immune and bone marrow cells that have been identified in the Su5416 VEGFR inhibitor models can be informative about heretofore undescribed processes in human PAH

    Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension

    Full text link
    BACKGROUND: An association between pulmonary arterial hypertension (PAH) and various immune disorders is well established. Recently, the role of an intact immune system in protecting against pulmonary angioproliferation was shown in an animal model. OBJECTIVE: To elucidate the role of T cells in human PAH, we comparatively studied T cell subclasses with emphasis on regulatory T cells (T(reg)) in the peripheral blood of patients with idiopathic pulmonary arterial hypertension (IPAH) and healthy controls. METHODS: Isolated peripheral blood mononuclear cells from 36 patients diagnosed with IPAH and 33 healthy controls were stained with fluorescently labeled monoclonal antibodies against superficial T cell markers (CD3, CD4, CD8, CD25) and FoxP3, the intracellular marker of T(reg) cells. The relative cell distribution was analyzed by flow cytometry. The functionality of patient and control T(reg) cells was assessed by coculture of T(reg) with nonregulatory T cells from the same individual. RESULTS: Significantly less CD8+ T cells (p = 0.02) and more CD25hi+ and FoxP3+CD4+ T cells were found in the peripheral blood of patients compared with controls (p = 0.009 and p < 0.001, respectively). The percentage of FoxP3+ cells within the CD25hi+CD4+ T(reg) cells was similar. T(reg) cell functionality was equal in patients and controls. CONCLUSION: Our findings of decreased CD8+ T cells and increased T(reg) cells in the peripheral blood of patients with IPAH are novel and may have implications for directing future research in the field to elucidate the differential role of T cells and the immune system in IPAH. 2007 S. Karger AG, Base
    corecore